Skip to main content

Advertisement

Log in

MiR-30d Participates in Vincristine-Induced Neuropathic Pain by Down-Regulating GAD67

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Vincristine is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy(CIPN), which brings patients a great disease burden and associated economic pressure. The mechanism under CIPN remains mostly unknown. The previous study has shown that cell-type-specific spinal synaptic plasticity in the dorsal horn plays a pivotal role in neuropathic pain. Downregulation of GABA transmission, which mainly acts as an inhibitory pathway, has been reported in the growing number of research. Our present study found that GAD67, responsible for > 90% of basal GABA synthesis, is down-regulated, while its relative mRNA remains unchanged in vincristine-induced neuropathy. Considering microRNAs (miRNAs) as a post-transcription modifier by degrading targeted mRNA or repressing mRNA translation, we performed genome-wide miRNA screening and revealed that miR-30d might contribute to GAD67 down-regulation. Further investigation confirmed that miR-30d could affect the fluorescence activity of GAD67 by binding to the 3 'UTR of the GAD67 gene, and intrathecal injection of miR-30d antagomir increased the expression of GAD67, partially rescued vincristine-induced thermal hyperalgesia and mechanical allodynia. In summary, our study revealed the molecule interactions of GAD67 and miR-30d in CIPN, which has not previously been discussed in the literature. The results give more profound insight into understanding the CIPN mechanism and hopefully helps pain control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Vishnoi A, Rani S (2017) MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol (Clifton, NJ) 1509:1–10

    Article  CAS  Google Scholar 

  2. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells (Dayton, OH) 30:1556–1564

    Article  CAS  Google Scholar 

  3. Zhao W, Zhao SP, Zhao YH (2015) MicroRNA-143/-145 in cardiovascular diseases. BioMed Res Int 2015:531740

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res : BCR 17:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pan Z, Shan Q, Gu P, Wang XM, Tai LW, Sun M, Luo X, Sun L, Cheung CW (2018) miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflamm 15:29

    Article  CAS  Google Scholar 

  6. Tramullas M, Francés R, de la Fuente R, Velategui S, Carcelén M, García R, Llorca J, Hurlé MA (2018) MicroRNA-30c-5p modulates neuropathic pain in rodents. Sci Transl Med 10:eaao6299

    Article  PubMed  CAS  Google Scholar 

  7. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  8. Price TJ, Prescott SA (2015) Inhibitory regulation of the pain gate and how its failure causes pathological pain. Pain 156:789–792

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW, Pin JP (2009) Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 60:43–56

    Article  CAS  PubMed  Google Scholar 

  10. Modi JP, Prentice H, Wu JY (2015) Regulation of GABA neurotransmission by glutamic acid decarboxylase (GAD). Curr Pharmaceut Des 21:4939–4942

    Article  CAS  Google Scholar 

  11. Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89:2115–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Nowicki MO, Wang X, Arnold WD, Fernandez SA, Mo X, Wechuk J, Krisky D, Goss J, Wolfe D, Popovich PG, Lawler S, Chiocca EA (2013) Comparative effectiveness of antinociceptive gene therapies in animal models of diabetic neuropathic pain. Gene Ther 20:742–750

    Article  CAS  PubMed  Google Scholar 

  13. Kanao M, Kanda H, Huang W, Liu S, Yi H, Candiotti KA, Lubarsky DA, Levitt RC, Hao S (2015) Gene transfer of glutamic acid decarboxylase 67 by herpes simplex virus vectors suppresses neuropathic pain induced by human immunodeficiency virus gp120 combined with ddC in rats. Anesth Analg 120:1394–1404

    Article  CAS  PubMed  Google Scholar 

  14. Siau C, Xiao W, Bennett GJ (2006) Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 201:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu T, Li D, Zhou X, Ouyang HD, Zhou LJ, Zhou H, Zhang HM, Wei XH, Liu G, Liu XG (2017) Oral application of magnesium-L-threonate attenuates vincristine-induced allodynia and hyperalgesia by normalization of tumor necrosis factor-alpha/nuclear factor-kappaB signaling. Anesthesiology 126:1151–1168

    Article  CAS  PubMed  Google Scholar 

  16. Li D, Huang ZZ, Ling YZ, Wei JY, Cui Y, Zhang XZ, Zhu HQ, Xin WJ (2015) Up-regulation of CX3CL1 via nuclear factor-κB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology 122:1142–1151

    Article  CAS  PubMed  Google Scholar 

  17. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

  18. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997) Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:6496–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, Lucas G (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong Q, Lu Z, Huang Q, Ruan L, Chen J, Liang Y, Wang H, Yue Y, Feng S (2015) Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 456:615–620

    Article  CAS  PubMed  Google Scholar 

  23. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain Nat Rev Dis Primers 3:17002

    Article  PubMed  Google Scholar 

  24. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Magoul R, Onteniente B, Geffard M, Calas A (1987) Anatomical distribution and ultrastructural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies. Neuroscience 20:1001–1009

    Article  CAS  PubMed  Google Scholar 

  26. Bráz JM, Wang X, Guan Z, Rubenstein JL, Basbaum AI (2015) Transplant-mediated enhancement of spinal cord GABAergic inhibition reverses paclitaxel-induced mechanical and heat hypersensitivity. Pain 156:1084–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Alles SRA, Smith PA (2018) Etiology and pharmacology of neuropathic pain. Pharmacol Rev 70:315–347

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Liu Z, Liu L, Xiao Z, Cao X, Cao Z, Xue L, Miao L, He X, Li W (2008) A novel human foamy virus mediated gene transfer of GAD67 reduces neuropathic pain following spinal cord injury. Neurosci Lett 432:13–18

    Article  CAS  PubMed  Google Scholar 

  29. Sakai A, Saitow F, Maruyama M, Miyake N, Miyake K, Shimada T, Okada T, Suzuki H (2017) MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nat Commun 8:16079

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peng C, Li L, Zhang MD, Bengtsson Gonzales C, Parisien M, Belfer I, Usoskin D, Abdo H, Furlan A, Häring M, Lallemend F, Harkany T, Diatchenko L, Hökfelt T, Hjerling-Leffler J, Ernfors P (2017) miR-183 cluster scales mechanical pain sensitivity by regulating basal and neuropathic pain genes. Science (New York, NY) 356:1168–1171

    Article  CAS  Google Scholar 

  31. Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H (2013) miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain 136:2738–2750

    Article  PubMed  Google Scholar 

  32. Zhang ZJ, Guo JS, Li SS, Wu XB, Cao DL, Jiang BC, Jing PB, Bai XQ, Li CH, Wu ZH, Lu Y, Gao YJ (2018) TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J Exp Med 215:3019–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, Drutel G, Léger C, Calas A, Nagy F, Landry M (2011) Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J 30:3830–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Salvador AM, Li G, Valkov N, Ziegler O, Yeri AS, Xiao CY, Meechoovet B, Alsop E, Rodosthenous RS, Kundu P, Huan T, Levy D, Tigges JC, Pico AR, Ghiran I, Silverman MG, Meng X, Kitchen R, Xu J, Van Keuren-Jensen K, Shah RV, Xiao J, Das S (2020) Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circul Res 128:e1

    Google Scholar 

  35. Croset M, Pantano F, Kan CWS, Bonnelye E, Descotes F, Alix-Panabières C, Lecellier CH, Bachelier R, Allioli N, Hong SS, Bartkowiak K, Pantel K, Clézardin P (2018) miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res 78:5259–5273

    Article  CAS  PubMed  Google Scholar 

  36. Lin ZY, Chen G, Zhang YQ, He HC, Liang YX, Ye JH, Liang YK, Mo RJ, Lu JM, Zhuo YJ, Zheng Y, Jiang FN, Han ZD, Wu SL, Zhong WD, Wu CL (2017) MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer 16:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tanabe M, Takasu K, Takeuchi Y, Ono H (2008) Pain relief by gabapentin and pregabalin via supraspinal mechanisms after peripheral nerve injury. J Neurosci Res 86:3258–3264

    Article  CAS  PubMed  Google Scholar 

  38. Fradkin M, Batash R, Elmaleh S, Debi R, Schaffer P, Schaffer M, Asna N (2019) Management of peripheral neuropathy induced by chemotherapy. Curr Med Chem 26:4698–4708

    Article  CAS  PubMed  Google Scholar 

  39. Rao RD, Michalak JC, Sloan JA, Loprinzi CL, Soori GS, Nikcevich DA, Warner DO, Novotny P, Kutteh LA, Wong GY (2007) Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 110:2110–2118

    Article  CAS  PubMed  Google Scholar 

  40. Shinde SS, Seisler D, Soori G, Atherton PJ, Pachman DR, Lafky J, Ruddy KJ, Loprinzi CL (2016) Can pregabalin prevent paclitaxel-associated neuropathy?: an ACCRU pilot trial. Support Care Cancer 24:547–553

    Article  PubMed  Google Scholar 

  41. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35:180–188

    Article  CAS  Google Scholar 

  42. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, Cooper WA, Kritharides L, Ridley L, Pattison ST, MacDiarmid J, Brahmbhatt H, Reid G (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–1396

    Article  PubMed  Google Scholar 

  43. Tan PH, Pao YY, Cheng JK, Hung KC, Liu CC (2013) MicroRNA-based therapy in pain medicine: current progress and future prospects. Acta Anaesthesiol Taiwan 51:171–176

    Article  PubMed  Google Scholar 

  44. Tsuda N, Mine T, Ioannides CG, Chang DZ (2009) Synthetic microRNA targeting glioma-associated antigen-1 protein. Methods Mol Biol (Clifton, NJ) 487:435–449

    CAS  Google Scholar 

  45. Zhou S, Wang Y, Meng Y, Xiao C, Liu Z, Brohawn P, Higgs BW, Jallal B, Jia Q, Qu B, Huang X, Tang Y, Yao Y, Harley JB, Shen N (2016) In vivo therapeutic success of microrna-155 antagomir in a mouse model of lupus alveolar hemorrhage. Arthritis Rheumatol (Hoboken, NJ) 68:953–964

    Article  CAS  Google Scholar 

  46. Jiménez-Zárate BS, Piña-Leyva C, Rodríguez-Sánchez M, Florán-Garduño B, Jiménez-Zamudio LA, Jiménez-Estrada I (2021) Day-night variations in the concentration of neurotransmitters in the rat lumbar spinal cord. J Circadian Rhythms 19:9

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ryu SW, Kim YO, Kim HB, Oh SB, Choi JI, Yoon MH (2021) Antinociceptive effect of intrathecal P7C3 via GABA in a rat model of inflammatory pain. Eur J Pharmacol 899:174029

    Article  CAS  PubMed  Google Scholar 

  48. Maeda Y, Lisi TL, Vance CG, Sluka KA (2007) Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res 1136:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen X, Liu Y, Xu S, Zhao Q, Wu H, Guo X, Shen R, Wang F (2014) Menin regulates spinal glutamate-GABA balance through GAD65 contributing to neuropathic pain. Pharmacol Rep 66:49–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has not been previously published and has not been submitted elsewhere for consideration. This study was funded by the National Natural Science Foundation of China (81600955, 81971048), Shanghai Pujiang Program (2020PJD059), "Deep Blue 123" Military Medical Research Special Key Research Project(2019YSL008), Natural Science Foundation of Shaanxi Province Department of Science and Technology (2018JM7052) and Scientific Research Fund Project of Shaanxi Province Department of Education (18JK0675).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Chang Xiong or Dai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures were approved by the Naval Medical University Animal Care and Use Committee and carried out following the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, Y., Wu, Y. et al. MiR-30d Participates in Vincristine-Induced Neuropathic Pain by Down-Regulating GAD67. Neurochem Res 47, 481–492 (2022). https://doi.org/10.1007/s11064-021-03462-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03462-3

Keywords

Navigation