Skip to main content

Advertisement

Log in

Anticonvulsant Effects of Carbonic Anhydrase Inhibitors: The Enigmatic Link Between Carbonic Anhydrases and Electrical Activity of the Brain

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acetazolamide (ACZ), a sulfonamide carbonic anhydrase (CA) inhibitor, was first introduced into medical use as a diuretic in the1950s. Shortly after its introduction, its antiglaucoma and anticonvulsant properties came to light. Subsequently, studies of ACZ have explored a plethora of neurophysiological functions of CAs in the CNS. In addition, topiramate (TPM) and zonisamide (ZNS), which were developed as antiepileptic drugs (AEDs) in the1990s, were found to have the ability to inhibit CAs. How CA inhibition prevents seizures is elusive. CA expression and activity are extensively detected in neurons, the choroid plexus, oligodendrocytes and astrocytes. TPM and ZNS appear to produce multimodal actions in the CNS as well as CA inhibition unlike ACZ. Nonetheless, CA inhibitors share some common denominators. They do not only affect the fine equilibrium among CO2, H+ and HCO3 in the extraneuronal and intraneuronal milieu, but also modulate the activity of ligand gated ion channels at the neuronal level such as GABA-A signaling through inhibiting CA-replenished HCO3 efflux. In addition, there are studies reporting their ability to alter Ca2+ kinetics through modulation of ligand gated Ca2+ channels, voltage gated Ca2+ channels (VGCC) or Ca2+-induced Ca2+ release channels (CICRC). The present study will review the involvement of CAs in the formation of epileptogenesis, and likely mechanisms by which CA inhibitors suppress the electrical activity of the brain. The common properties of CA inhibitors provide some clues for a possible link among metabolism, CAs, Ca2+ and GABA signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loscher W, Potschka H, Sisodiya SM, Vezzani N (2020) Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 72:606–638. https://doi.org/10.1124/pr.120.019539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ansell B, Clarke E (1956) Acetazolamide in treatment of epilepsy. Br Med J 1: 650–654. https//doi: https://doi.org/10.1136/bmj.1.4968.650.

  3. Woodbury DM, Karler R (1960) The role of Carbon dioxide in the nervous system. Anesthesiology 21:686–703. https://doi.org/10.1097/00000542-196011000-00012

    Article  PubMed  CAS  Google Scholar 

  4. Grosso S, Franzoni E, Iannetti P, Incorpora G, Cardinali C, Toldo I, Verrotti A, Caterina Moscano F, Lo Faro V, Mazzone L, Zamponi N, Boniver C, Spalice A, Parisi P, Morgese G, Balestri P (2005) Efficacy and safety of topiramate in refractory epilepsy of childhood: long-term follow-up study. J Child Neurol 20(11):893–897. https://doi.org/10.1177/08830738050200110601

    Article  PubMed  Google Scholar 

  5. Faught E (2004) Review of United States and European clinical trials of zonisamide in the treatment of refractory partial-onset seizures. Seizure 13(Suppl 1):S59–S72. https://doi.org/10.1016/j.seizure.2004.04.009

    Article  PubMed  Google Scholar 

  6. Walker MC, Sander JW (1996) Topiramate: a new antiepileptic drug for refractory epilepsy. Seizure 5:199–203. https://doi.org/10.1016/s1059-1311(96)80036-7

    Article  PubMed  CAS  Google Scholar 

  7. Masuda Y, Ishizaki M, Shimizu M (1998) Zonisamide: pharmacology and clinical efficacy in epilepsy. CNS Drug Rev 4:341–360. https://doi.org/10.1111/j.1527-3458.1998.tb00075.x

    Article  PubMed  CAS  Google Scholar 

  8. Braga MF, Aroniadou-Anderjaska V, Li H, Rogawski MA (2009) Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J Pharmacol Exp Ther 330:558–566. https://doi.org/10.1124/jpet.109.153908

    Article  PubMed  CAS  Google Scholar 

  9. White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH (2000) Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism. Epilepsia 41(Suppl 1):S17–S20

    Article  CAS  Google Scholar 

  10. Petroff OA, Hyder F, Rothman DL, Mattson RH (2001) Topiramate rapidly raises brain GABA in epilepsy patients. Epilepsia 42:543–548. https://doi.org/10.1046/j.1528-1157.2001.18800.x

    Article  PubMed  CAS  Google Scholar 

  11. Yamamura S, Saito H, Suzuki N, Kashimoto S, Hamaguchi T, Ohoyama K, Suzuki D, Kanehara S, Nakagawa M, Shiroyama T, Okada M (2009) Effects of zonisamide on neurotransmitter release associated with inositol triphosphate receptors. Neurosci Lett 454:91–96. https://doi.org/10.1016/j.neulet.2009.02.065

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida S, Okada M, Zhu G, Kaneko S (2005) Effects of zonisamide on neurotransmitter exocytosis associated with ryanodine receptors. Epilepsy Res 67:153–162. https://doi.org/10.1016/j.eplepsyres.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  13. Zhu G, Okada M, Yoshida S, Kaneko S (2010) Intracellular CICR-associated pharmacological mechanism of action of antiepileptic drugs. Epilepsy&Seizure 3:154–162

    Google Scholar 

  14. Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977–981. https://doi.org/10.1126/science.7638623

    Article  PubMed  CAS  Google Scholar 

  15. Hamidi S, Avoli M (2015) Carbonic anhydrase inhibition by acetazolamide reduces in vitro epileptiform synchronization. Neuropharmacology 95:377–387. https://doi.org/10.1016/j.neuropharm.2015.04.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lillis KP, Kramer MA, Mertz J, Staley KJ, White JA (2012) Pyramidal cells accumulate chloride at seizure onset. Neurobiol Dis 47:358–366. https://doi.org/10.1016/j.nbd.2012.05.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. DeLorenzo RJ, Sombati S, Coulter DA (2000) Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia 41(Suppl 1):S40–S44. https://doi.org/10.1111/j.1528-1157.2000.tb06048.x

    Article  CAS  Google Scholar 

  18. Schauf CL (1987) Zonisamide enhances slow sodium inactivation in Myxicola. Brain Res 413:185–188. https://doi.org/10.1016/0006-8993(87)90168-5

    Article  PubMed  CAS  Google Scholar 

  19. Koch A, Woodbury DM (1960) Carbonic anhydrase inhibition and brain electrolyte composition. Am J Physiol 198:434–440. https://doi.org/10.1152/ajplegacy.1960.198.2.434

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X, Velumian AA, Jones OT, Carlen PL (2000) Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia 41(Suppl 1):S52–S60. https://doi.org/10.1111/j.1528-1157.2000.tb02173.x

    Article  CAS  Google Scholar 

  21. Rossier MF, Burnay MM, Vallotton MB, Capponi AM (1996) Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology 137:4817–4826. https://doi.org/10.1210/endo.137.11.8895352

    Article  PubMed  CAS  Google Scholar 

  22. McNaughton NC, Davies CH, Randall A (2004) Inhibition of alpha(1E) Ca(2+) channels by carbonic anhydrase inhibitors. J Pharmacol Sci 95:240–247. https://doi.org/10.1254/jphs.fp0040032

    Article  PubMed  CAS  Google Scholar 

  23. Poulsen CF, Simeone TA, Maar TE, Smith-Swintosky V, White HS, Schousboe A (2004) Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem Res 29:275–282. https://doi.org/10.1023/b:nere.0000010456.92887.3b

    Article  PubMed  CAS  Google Scholar 

  24. Dodgson SJ, Shank RP, Maryanoff BE (2000) Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia 41(Suppl. 1):S35–S39. https://doi.org/10.1111/j.1528-1157.2000.tb06047.x

    Article  CAS  Google Scholar 

  25. Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181. https://doi.org/10.1038/nrd2467

    Article  PubMed  CAS  Google Scholar 

  26. Herrero AI, Del Olmo N, Gonzalez-Escalada JR, Solis JM (2002) Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology 42:210–220. https://doi.org/10.1016/s0028-3908(01)00171-x

    Article  PubMed  CAS  Google Scholar 

  27. Leniger T, Thone J, Wiemann M (2004) Topiramate modulates pH of hippocampal CA3 neurons by combined effects on carbonic anhydrase and Cl-/HCO3- exchange. Br J Pharmacol 142:831–842. https://doi.org/10.1038/sj.bjp.0705850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mishra CB, Tiwari M, Supuran CT (2020) Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? [published online ahead of print, 2020 Jul 21]. Med Res Rev. https://doi.org/10.1002/med.21713.10.1002/med.21713

    Article  PubMed  Google Scholar 

  29. Kida E, Palminiello S, Golabek AA, Walus M, Wierzba-Bobrowicz T, Rabe A, Albertini G, Wisniewski KE (2006) Carbonic anhydrase II in the developing and adult human brain. J Neuropathol Exp Neurol 65(7):664–674. https://doi.org/10.1097/01.jnen.0000225905.52002.3e

    Article  PubMed  CAS  Google Scholar 

  30. Ruusuvuori E, Huebner AK, Kirilkin I, Yukin A, Blaesse P, Helmy MM, Kang HJ, Muayed M, Hennings JC, Sestan N, Hubner CA, Kaila K (2013) Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. EMBO J 32:2275–2286. https://doi.org/10.1038/emboj.2013.160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Harju AK, Bootorabi F, Kuuslahti M, Supuran CT, Parkkila S (2013) Carbonic anhydrase III: a neglected isozyme is stepping into the limelight. J Enzyme Inhib Med Chem 28(2):231–239. https://doi.org/10.3109/14756366.2012.700640

    Article  PubMed  Google Scholar 

  32. Wang W, Bradley SR, Richerson GB (2002) Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2). J Physiol 540(Pt 3):951–970. https://doi.org/10.1113/jphysiol.2001.013443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Shah GN, Ulmasov B, Waheed A, Becker T, Makani S, Svichar N, Chesler M, Sly WS (2005) Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc Natl Acad Sci USA 102:16771–16776. https://doi.org/10.1073/pnas.0508449102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Svichar N, Esquenazi S, Waheed A, Sly W, Chesler M (2006) Functional demonstration of surface carbonic anhydrase IV activity on rat astrocytes. Glia 53:241–247. https://doi.org/10.1002/glia.20277

    Article  PubMed  Google Scholar 

  35. Ghandour MS, Parkkila AK, Parkkila S, Waheed A, Sly WS (2000) Mitochondrial carbonic anhydrase in the nervous system: Expression in neuronal and glial cells. J Neurochem 75:2212–2220. https://doi.org/10.1046/j.1471-4159.2000.0752212.x

    Article  PubMed  CAS  Google Scholar 

  36. Lakkis MM, Sue O”Shea K, Tashian RE (1997) Differential expression of the carbonic anhydrase genes for CA VII (Car7) and CA-RP VIII (Car8) in mouse brain. J Histochem Cytochem 45:657–662. https://doi.org/10.1177/002215549704500503

    Article  PubMed  CAS  Google Scholar 

  37. Bertling E, Blaesse P, Seja P, Kremneva E, Gateva G, Virtanen MA, Summanen M, Spoljaric I, Blaesse M, Paavilainen V, Vutskits L, Kaila K, Hotulainen P, Ruusuvuori E (2019) Carbonic anhydrase VII regulates dendritic spine morphology and density via actin filament bundling. bioRxiv. https://doi.org/10.1101/736868

    Article  Google Scholar 

  38. Taniuchi K, Nishimori I, Takeuchi T, Fujikawa-Adachi K, Ohtsuki Y, Onishi S (2002) Developmental expression of carbonic anhydrase-related proteins VIII, X and XI in the human brain. Neuroscience 112(1):93–99. https://doi.org/10.1016/s0306-4522(02)00066-0

    Article  PubMed  CAS  Google Scholar 

  39. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proesholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919. https://doi.org/10.1016/S0002-9440(10)64038-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Halmi P, Parkkila S, Honkaniemi J (2006) Expression of carbonic anhydrases II, IV, VII, VIII and XII in rat brain after kainic acid induced status epilepticus. Neurochem Int 48:24–30.
https//doi: https://doi.org/10.1016/j.neuint.2005.08.007.

  41. Lehtonen J, Shen B, Vihinen M, Casini A, Scozzafava A, Supuran CT, Parkkila AK, Saarnio J, Kivela AJ, Waheed A, Sly WS, Parkkila S (2004) Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family. J Biol Chem 279(4):2719–2727. https://doi.org/10.1074/jbc.m308984200

    Article  PubMed  CAS  Google Scholar 

  42. Parkkila S, Parkkila AK, Rajaniemi H, Shah GN, Grubb JH, Waheed A, Sly WS (2001) Expression of membrane-associated carbonic anhydrase XIV on neurons and axons in mouse and human brain. Proc Natl Acad Sci USA 98:1918–1923. https://doi.org/10.1073/pnas.98.4.1918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Makani S, Chen HY, Esquenazi S, Shah GN, Waheed A, Sly WS, Chesler M (2012) NMDA receptor-dependent afterdepolarizations are curtailed by carbonic anhydrase 14: regulation of a short-term postsynaptic potentiation. J Neurosci 32:16754–16762. https://doi.org/10.1523/JNEUROSCI.1467-12.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Meldrum B, Chapman A (1999) Metabolic consequences of seizures. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  45. Balestrino M, Somjen GG (1988) Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J Physiol 396:247–266. https://doi.org/10.1113/jphysiol.1988.sp016961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tolner EA, Hochman DW, Hassinen P, Otahal J, Gaily E, Haglund MM, Kubova H, Schuchmann S, Vanhatalo S, Kaila K (2011) Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia 52:104–114. https://doi.org/10.1111/j.1528-1167.2010.02731.x

    Article  PubMed  Google Scholar 

  47. Sinning A, Hubner CA (2013) Minireview: pH and synaptic transmission. FEBS Lett 587:1923–1928. https://doi.org/10.1016/j.febslet.2013.04.045

    Article  PubMed  CAS  Google Scholar 

  48. Ruusuvuori K, Kaila K (2014) Carbonic anhydrases and brain pH in the control of neuronal excitability. In: Frost SC, Mckenna R (eds) Carbonic anhydrases: mechanism, regulation, link to disease and industrial application. Springer, Dordrecht, pp 271–290

    Chapter  Google Scholar 

  49. Pasternack M, Voipio J, Kaila K (1993) Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurons. Acta Physiol Scand 148:229–231. https://doi.org/10.1111/j.1748-1716.1993.tb09553.x

    Article  PubMed  CAS  Google Scholar 

  50. Kraig RP, Ferreira-Filho CR, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophysiol 49:831–850. https://doi.org/10.1152/jn.1983.49.3.831

    Article  PubMed  CAS  Google Scholar 

  51. Paalasmaa P, Taira T, Voipio J, Kaila K (1994) Extracellular alkaline transients mediate by glutamate receptors in the rat hippocampal slice are not due to a proton conductance. J Neurophysiol 72:3031–2033. https://doi.org/10.1152/jn.1994.72.4.2031

    Article  Google Scholar 

  52. Smith SE, Chesler M (1999) Effect of divalent cations on AMPA-evoked extracellular alkaline shifts in rat hippocampal slices. J Neurophysiol 82:1902–1908. https://doi.org/10.1152/jn.1999.82.4.1902

    Article  PubMed  CAS  Google Scholar 

  53. Grichtchenko II, Chesler M (1996) Calcium- and barium-dependent extracellular alkaline shifts evoked by electrical activity in rat hippocampal slices. Neuroscience 75:1117–1126. https://doi.org/10.1016/0306-4522(96)00293-x

    Article  PubMed  CAS  Google Scholar 

  54. Chen JC, Chesler M (1992) pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase. Proc Natl Acad Sci USA 89:7786–7790. https://doi.org/10.1073/pnas.89.16.7786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tong CK, Cammer W, Chesler M (2000) Activity-dependent pH shifts in hippocampal slices from normal and carbonic anhydrase II-deficient mice. Glia 31(2):125–130

    Article  CAS  Google Scholar 

  56. Tong CK, Brion LP, Suarez C, Chesler M (2000) Interstitial carbonic anhydrase (CA) activity in brain is attributable to membrane-bound CA type IV. J Neurosci 20:8247–8253. https://doi.org/10.1523/JNEUROSCI.20-22-08247.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350. https://doi.org/10.1038/345347a0

    Article  PubMed  CAS  Google Scholar 

  58. Aribi AM, Stringer JL (2002) Effects of antiepileptic drugs on extracellular pH regulation in the hippocampal CA1 region in vivo. Epilepsy Res 49:143–151. https://doi.org/10.1016/s0920-1211(02)00019-044-

    Article  PubMed  CAS  Google Scholar 

  59. Munsch T, Pape H-C (1999) Upregulation of the hyperpolarization-activated cation current in rat thalamic relay neurons by acetazolamide. J Physiol 519:505–514. https://doi.org/10.1111/j.1469-7793.1999.0505m.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685. https://doi.org/10.1126/science.8235588

    Article  PubMed  CAS  Google Scholar 

  61. Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27(4):757–785. https://doi.org/10.1016/j.cmet.2018.03.008

    Article  PubMed  CAS  Google Scholar 

  62. Wetzel P, Hasse A, Papadopoulos S, Voipio J, Kaila K, Gros G (2001) Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres. J Physiol 531(Pt 3):743–756. https://doi.org/10.1111/j.1469-7793.2001.0743h.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Svichar N, Chesler M (2003) Surface carbonic anhydrase activity on astrocytes and neurons facilitates lactate transport. Glia 41:415–419. https://doi.org/10.1002/glia.10187

    Article  PubMed  Google Scholar 

  64. Becker HM, Deitmer JW (2008) Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1. J Biol Chem 283(31):21655–21667. https://doi.org/10.1074/jbc.M802134200

    Article  PubMed  CAS  Google Scholar 

  65. Deitmer JW, Theparambil SM, Ruminot I, Becker HM (2015) The role of membrane acid/base transporters and carbonic anhydrases for cellular pH and metabolic processes. Front Neursci 8:430–434

    Google Scholar 

  66. Bough KJ, Rho JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48(1):43–58. https://doi.org/10.1111/j.1528-1167.2007.00915.x

    Article  PubMed  CAS  Google Scholar 

  67. Simeone TA, Wilcox KS, White HS (2006) Subunit selectivity of topiramate modulation of heteromeric GABA(A) receptors. Neuropharmacology 50(7):845–857. https://doi.org/10.1016/j.neuropharm.2005.12.006

    Article  PubMed  CAS  Google Scholar 

  68. Fujiwara-Tsukamoto Y, Isomura Y, Nambu A, Takada M (2003) Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 119:265–275. https://doi.org/10.1016/s0306-4522(03)00102-7

    Article  PubMed  CAS  Google Scholar 

  69. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) GABA Excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18:467–486. https://doi.org/10.1177/1073858412438697

    Article  PubMed  CAS  Google Scholar 

  70. Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signaling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562:27–36. https://doi.org/10.1113/jphysiol.2004.077495. Erratum in: J Physiol. 2005 May 1;564(Pt 3):953

  71. Di Fiore A, Monti DM, Scaloni A, De Simone G, Monti SM (2018) Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxid Med Cell Longev. https://doi.org/10.1155/2018/2018306

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J (2004) Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24:2699–2707. https://doi.org/10.1523/JNEUROSCI.5176-03.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl 197:9–18. https://doi.org/10.1111/ane.12099

    Article  CAS  Google Scholar 

  74. Gibbs JW 3rd, Sombati S, DeLorenzo RJ, Coulter DA (2000) Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 41(Suppl 1):S10–S16. https://doi.org/10.1111/j.1528-1157.2000.tb02164.x

    Article  CAS  Google Scholar 

  75. Ängehagen M, Ben-Menachem E, Shank R, Rönnbäck L, Hansson E (2004) Topiramate modulation of kainate-induced calcium currents is inversely related to channel phosphorylation level. J Neurochem 88:320–325. https://doi.org/10.1046/j.1471-4159.2003.02186.x

    Article  PubMed  CAS  Google Scholar 

  76. Fukushima K, Hatanaka K, Sagane K, Katsutoshi I (2020) Inhibitory effect of anti-seizure medications on ionotropic glutamate receptors: special focus on AMPA receptor subunits. Epilepsy 167:106452. https://doi.org/10.1016/j.eplepsyres.2020.106452

    Article  CAS  Google Scholar 

  77. Okada M, Kawata Y, Mizuno K, Wada K, Kondo T, Kaneko S (1998) Interaction between Ca2+, K+, carbamazepine and zonisamide on hippocampal extracellular glutamate monitored with a microdialysis electrode. Br J Pharmacol 124:1277–1285. https://doi.org/10.1038/sj.bjp.0701941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE (2000) An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 41(Suppl 1):S3-9

    Article  CAS  Google Scholar 

  79. Shank RP, Gardocki JF, Vaught JL, Davis CB, Schupsky JJ, Raffa RB, Dodgson SJ, Nortey SO, Maryanoff BE (1994) Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460. https://doi.org/10.1111/j.1528-1157.1994.tb02459.x

    Article  PubMed  CAS  Google Scholar 

  80. McAuley JW, Biederman TS, Smith JC, Moore JL (2002) Newer therapies in the drug treatment of epilepsy. Ann Pharmacother 36:119–129. https://doi.org/10.1345/aph.10417

    Article  PubMed  CAS  Google Scholar 

  81. Yamamoto Y, Takahashi Y, Imai K, Mishima N, Yazawa R, Inoue K, Itoh K, Kagawa Y, Inoue Y (2013) Risk factors for hyperammonemia in pediatric patients with epilepsy. Epilepsia 54(6):983–989. https://doi.org/10.1111/epi.12125

    Article  PubMed  CAS  Google Scholar 

  82. Bles C, van der Hoeven JG, Hoedemakers C (2014) Acetazolamide induced hyperammonaemia: a case report and review of the literature. Neth J Crit Care 18:25–27

    Google Scholar 

  83. Knudsen JF, Sokol GH, Flowers CM (2008) Adjunctive topiramate enhances the risk of hypothermia associated with valproic acid therapy. J Clin Pharm Ther 33(5):513–519. https://doi.org/10.1111/j.1365-2710.2008.00943.x

    Article  PubMed  CAS  Google Scholar 

  84. Glauser TA, Pellock JM, Bebin EM, Fountain NB, Ritter FJ, Jensen CM, Shields WD (2002) Efficacy and safety of levetiracetam in children with partial seizures: an open-label trial. Epilepsia 43(5):518–524. https://doi.org/10.1046/j.1528-1157.2002.13101.x

    Article  PubMed  CAS  Google Scholar 

  85. Stephen LJ, Sills GJ, Brodie MJ (1998) Lamotrigine and topiramate may be a useful combination. Lancet 351(9107):958–959. https://doi.org/10.1016/S0140-6736(05)60613-7

    Article  PubMed  CAS  Google Scholar 

  86. Takeoka M, Riviello JJ Jr, Pfeifer H, Thiele EA (2002) Concomitant treatment with topiramate and ketogenic diet in pediatric epilepsy. Epilepsia 43(9):1072–1075. https://doi.org/10.1046/j.1528-1157.2002.00602.x

    Article  PubMed  CAS  Google Scholar 

  87. Paul E, Conant KD, Dunne IE, Pfeifer HH, Lyczkowski DA, Linshaw MA, Thiele EA (2010) Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy. Epilepsy Res 90(1–2):151–156. https://doi.org/10.1016/j.eplepsyres.2010.04.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bookheimer S, Schrader LM, Rausch R, Sankar R, Engel J Jr (2005) Reduced anesthetization during the intracarotid amobarbital (Wada) test in patients taking carbonic anhydrase-inhibiting medications. Epilepsia 46:236–243. https://doi.org/10.1111/j.0013-9580.2005.23904.x

    Article  PubMed  CAS  Google Scholar 

  89. Ringman JM, Grant AC (2005) Carbonic anhydrase inhibitors and amobarbital resistance. Epilepsia 46:1333–1333. https://doi.org/10.1111/j.1528-1167.2005.18505_1.x

    Article  PubMed  Google Scholar 

  90. Burns TG, Lee GP, McCormick ML, Pettoni AN, Flamini JR, Cohen M (2009) Carbonic anhydrase-inhibiting medications and the intracarotid amobarbital procedure in children. Epilepsy Behav 15:240–244. https://doi.org/10.1016/j.yebeh.2009.01.006

    Article  PubMed  Google Scholar 

  91. Gordey M, DeLorey TM, Olsen RW (2000) Differential sensitivity of recombinant GABA(A) receptors expressed in Xenopus oocytes to modulation by topiramate. Epilepsia 41(S1):25–29

    Article  CAS  Google Scholar 

  92. Anderson RE, Chiu P, Woodbury DM (1989) Mechanisms of tolerance to the anticonvulsant effects of acetazolamide in mice: relation to the activity and amount of carbonic anhydrase in brain. Epilepsia 30:208–216. https://doi.org/10.1111/j.1528-1157.1989.tb05456.x

    Article  PubMed  CAS  Google Scholar 

  93. Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, Miyamoto K (1992) Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 12:21–27. https://doi.org/10.1016/0920-1211(92)90087-a

    Article  PubMed  CAS  Google Scholar 

  94. Gottfried JA, Chesler M (1995) Benzolamide inhibits low-threshold calcium currents in hippocampal pyramidal neurons. J Neurophysiol 74:2774–2777. https://doi.org/10.1152/jn.1995.74.6.2774

    Article  PubMed  CAS  Google Scholar 

  95. Jen JC, Yue Q, Karrim J, Nelson SF, Baloh RW (1998) Spinocerebellar ataxia type 6 with positional vertigo and acetazolamide responsive episodic ataxia. J Neurol Neurosurg Psychiatry 65(4):565–568. https://doi.org/10.1136/jnnp.65.4.565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Okada M, Yoshida S, Zhu G, Hirose S, Kaneko S (2005) Biphasic actions of topiramate on monoamine exocytosis associated with both soluble N-ethylmaleimide-sensitive factor attachment protein receptors and Ca(2+)-induced Ca(2+)-releasing systems. Neuroscience 134:233-46. https://doi.org/10.1016/j.neuroscience.2005.03.045. Erratum in: Neuroscience. 2015;303:631–633

  97. Riley DA, Ellis S, Bain JL (1984) Ultrastructural cytochemical localization of carbonic anhydrase activity in rat peripheral sensory and motor nerves, dorsal root ganglia and dorsal column nuclei. Neuroscience 13:189–206. https://doi.org/10.1016/0306-4522(84)90269-0

    Article  PubMed  CAS  Google Scholar 

  98. Bruns W, Dermietzel R, Gros G (1986) Carbonic anhydrase in the sarcoplasmic reticulum of rabbit skeletal muscle. J Physiol 371:351–364. https://doi.org/10.1113/jphysiol.1986.sp015980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Eckle VS, Shcheglovitov A, Vitko I, Dey D, Yap CC, Winckler B, Perez-Reyes E (2014) Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol 592:795–809. https://doi.org/10.1113/jphysiol.2013.264176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Delorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy [published correction appears in Pharmacol Ther. 2006 Jul;111(1):287]. Pharmacol Ther 105(3):229–266. https://doi.org/10.1016/j.pharmthera.2004.10.004

    Article  PubMed  CAS  Google Scholar 

  101. Stefani A, Spadoni F, Bernardi G (1997) Voltage-activated calcium channels: targets of antiepileptic drug therapy? Epilepsia 38:959

    Article  CAS  Google Scholar 

  102. Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 93:4170–4174. https://doi.org/10.1073/pnas.93.9.4170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Innocenti A, Scozzafava A, Parkkila S, Puccetti L, De Simone G, Supuran CT (2008) Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorg Med Chem Lett 18:2267–2271. https://doi.org/10.1016/j.bmcl.2008.03.012

    Article  PubMed  CAS  Google Scholar 

  104. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756

    Article  CAS  Google Scholar 

  105. Chen QX, Stelzer A, Kay AR, Wong RK (1990) GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J Physiol 420:207–221. https://doi.org/10.1113/jphysiol.1990.sp017908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Zehra Ozsoy.

Ethics declarations

Conflict of interest

The author has no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozsoy, H.Z. Anticonvulsant Effects of Carbonic Anhydrase Inhibitors: The Enigmatic Link Between Carbonic Anhydrases and Electrical Activity of the Brain. Neurochem Res 46, 2783–2799 (2021). https://doi.org/10.1007/s11064-021-03390-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03390-2

Keywords

Navigation