Skip to main content
Log in

FAM134B-Mediated ER-Phagy in Mg2+-Free Solution-Induced Mitochondrial Calcium Homeostasis and Cell Death in Epileptic Hippocampal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondrial-associated endoplasmic reticulum (ER) membranes (MAMs) regulate calcium (Ca2+) homeostasis via Ca2+ transport-related proteins such as inositol-1,4,5-triphosphate receptor (IP3R). FAM134B-mediated ER-phagy plays an important role in ER homeostasis. However, it remains unknown whether FAM134B-mediated ER-phagy affects mitochondrial Ca2+ homeostasis and cell death through MAMs. In this study, we demonstrated that colocalization degree of FAM134B with LC3 and the LC3-II/LC3-I ratio were elevated in the hippocampal neuronal culture (HNC) model of acquired epilepsy (AE), which indicate an increased level of autophagy. In this model, FAM134B overexpression enhanced ER-phagy, while FAM134B downregulation had the opposite effect. Additionally, FAM134B overexpression significantly reversed the increases in IP3R expression and mitochondrial Ca2+ concentration and the decrease in the ER Ca2+ concentration in this model. FAM134B overexpression also ameliorated the AE-induced ultrastructural damage in neuronal mitochondria, decrease in mitochondrial membrane potential (mMP), cytochrome c (CytC) release and caspase-3 activation, while FAM134B downregulation induced the opposite effects. Altogether, our data indicate that FAM134B-mediated ER-phagy can attenuate AE-induced neuronal apoptosis, possibly by modulating the IP3R in MAMs to alter Ca2+ exchange between ER and mitochondria and thus inhibit mitochondrial structural damage, a decrease in mMP, release of CytC and mitochondrial apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94. https://doi.org/10.1007/s00018-015-2052-6

    Article  CAS  PubMed  Google Scholar 

  2. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  3. De Leonibus C, Cinque L, Settembre C (2019) Emerging lysosomal pathways for quality control at the endoplasmic reticulum. FEBS Lett 593:2319–2329. https://doi.org/10.1002/1873-3468.13571

    Article  CAS  PubMed  Google Scholar 

  4. Song S, Tan J, Miao Y, Zhang Q (2018) Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol 233:3867–3874. https://doi.org/10.1002/jcp.26137

    Article  CAS  PubMed  Google Scholar 

  5. Loi M, Fregno I, Guerra C, Molinari M (2018) Eat it right: ER-phagy and recovER-phagy. Biochem Soc Trans 46:699–706. https://doi.org/10.1042/BST20170354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, Mauthe M, Katona I, Qualmann B, Weis J, Reggiori F, Kurth I, Hubner CA, Dikic I (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–358. https://doi.org/10.1038/nature14498

    Article  CAS  PubMed  Google Scholar 

  7. Bhaskara RM, Grumati P, Garcia-Pardo J, Kalayil S, Covarrubias-Pinto A, Chen W, Kudryashev M, Dikic I, Hummer G (2019) Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat Commun 10:2370. https://doi.org/10.1038/s41467-019-10345-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiramel AI, Best SM (2018) Role of autophagy in Zika virus infection and pathogenesis. Virus Res 254:34–40. https://doi.org/10.1016/j.virusres.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549. https://doi.org/10.1126/science.aaf5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perrone M, Caroccia N, Genovese I, Missiroli S, Modesti L, Pedriali G, Vezzani B, Vitto VAM, Antenori M, Lebiedzinska-Arciszewska M, Wieckowski MR, Giorgi C, Pinton P (2020) The role of mitochondria-associated membranes in cellular homeostasis and diseases. Int Rev Cell Mol Biol 350:119–196. https://doi.org/10.1016/bs.ircmb.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  11. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. https://doi.org/10.1083/jcb.200608073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Catoni C, Cali T, Brini M (2019) Calcium, dopamine and neuronal calcium sensor 1: their contribution to Parkinson’s disease. Front Mol Neurosci 12:55. https://doi.org/10.3389/fnmol.2019.00055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giorgi C, Wieckowski MR, Pandolfi PP, Pinton P (2011) Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Commun Integr Biol 4:334–335. https://doi.org/10.4161/cib.4.3.15021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sombati S, Delorenzo RJ (1995) Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J Neurophysiol 73:1706–1711. https://doi.org/10.1152/jn.1995.73.4.1706

    Article  CAS  PubMed  Google Scholar 

  16. Hinze SJ, Jackson MR, Lie S, Jolly L, Field M, Barry SC, Harvey RJ, Shoubridge C (2017) Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Transl Psychiatry 7:e1110. https://doi.org/10.1038/tp.2017.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Wang C, Lian Y, Zhang H, Meng X, Yu M, Li Y, Xie N (2020) Role of the mitochondrial calcium uniporter in Mg(2+)-free-induced epileptic hippocampal neuronal apoptosis. Int J Neurosci 130:1024–1032. https://doi.org/10.1080/00207454.2020.1715978

    Article  CAS  PubMed  Google Scholar 

  18. Bento CF, Ashkenazi A, Jimenez-Sanchez M, Rubinsztein DC (2016) The Parkinson’s disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun 7:11803. https://doi.org/10.1038/ncomms11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie N, Li Y, Wang C, Lian Y, Zhang H, Li Y, Meng X, Du L (2020) FAM134B attenuates seizure-induced apoptosis and endoplasmic reticulum stress in hippocampal neurons by promoting autophagy. Cell Mol Neurobiol 40:1297–1305. https://doi.org/10.1007/s10571-020-00814-5

    Article  CAS  PubMed  Google Scholar 

  20. Fu J, Peng L, Wang W, He H, Zeng S, Chen TC, Chen Y (2019) Sodium valproate reduces neuronal apoptosis in acute pentylenetetrzole-induced seizures via inhibiting ER stress. Neurochem Res 44:2517–2526. https://doi.org/10.1007/s11064-019-02870-w

    Article  CAS  PubMed  Google Scholar 

  21. Deegan S, Saveljeva S, Gorman AM, Samali A (2013) Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 70:2425–2441. https://doi.org/10.1007/s00018-012-1173-4

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson S (2020) Emerging principles of selective ER autophagy. J Mol Biol 432:185–205. https://doi.org/10.1016/j.jmb.2019.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carvajal FJ, Mattison HA, Cerpa W (2016) Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast 2016:2701526. https://doi.org/10.1155/2016/2701526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diaz-Prieto N, Herrera-Peco I, de Diego AM, Ruiz-Nuno A, Gallego-Sandin S, Lopez MG, Garcia AG, Cano-Abad MF (2008) Bcl2 mitigates Ca2+ entry and mitochondrial Ca2+ overload through downregulation of L-type Ca2+ channels in PC12 cells. Cell Calcium 44:339–352. https://doi.org/10.1016/j.ceca.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  25. Rieusset J, Fauconnier J, Paillard M, Belaidi E, Tubbs E, Chauvin MA, Durand A, Bravard A, Teixeira G, Bartosch B, Michelet M, Theurey P, Vial G, Demion M, Blond E, Zoulim F, Gomez L, Vidal H, Lacampagne A, Ovize M (2016) Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 59:614–623. https://doi.org/10.1007/s00125-015-3829-8

    Article  CAS  PubMed  Google Scholar 

  26. Zhu L, Wang X, Wang Y (2021) Roles of FAM134B in diseases from the perspectives of organelle membrane morphogenesis and cellular homeostasis. J Cell Physiol. https://doi.org/10.1002/jcp.30377

    Article  PubMed  Google Scholar 

  27. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52:36–43. https://doi.org/10.1016/j.ceca.2012.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72. https://doi.org/10.1016/j.ceca.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  29. La Rovere RM, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60:74–87. https://doi.org/10.1016/j.ceca.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  30. Vervliet T, Parys JB, Bultynck G (2016) Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35:5079–5092. https://doi.org/10.1038/onc.2016.31

    Article  CAS  PubMed  Google Scholar 

  31. Chen L, Sun Q, Zhou D, Song W, Yang Q, Ju B, Zhang L, Xie H, Zhou L, Hu Z, Yao H, Zheng S, Wang W (2017) HINT2 triggers mitochondrial Ca(2+) influx by regulating the mitochondrial Ca(2+) uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett 411:106–116. https://doi.org/10.1016/j.canlet.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  32. Juhaszova M, Wang S, Zorov DB, Nuss HB, Gleichmann M, Mattson MP, Sollott SJ (2008) The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann N Y Acad Sci 1123:197–212. https://doi.org/10.1196/annals.1420.023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China [Nos. 81701272, 81971214]; Provincial Ministry Co-construction Project from Medical Scientific and Technological Research Program of Henan Province [No. SB201902011] and Training plan for young backbone teachers of Zhengzhou University [No. 2019ZDGGJS056].

Author information

Authors and Affiliations

Authors

Contributions

NX and CW contributed to conception and design of the study; YL, YL, LD, JZ, NL, XH and WZ performed the experiments; NX and LM performed the statistical analysis; CW and YL wrote the manuscript. All authors contributed to manuscript revision read and approved the submitted version.

Corresponding authors

Correspondence to Nanchang Xie or Liang Ming.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, Y., Li, Y. et al. FAM134B-Mediated ER-Phagy in Mg2+-Free Solution-Induced Mitochondrial Calcium Homeostasis and Cell Death in Epileptic Hippocampal Neurons. Neurochem Res 46, 2485–2494 (2021). https://doi.org/10.1007/s11064-021-03389-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03389-9

Keywords

Navigation