Skip to main content

Advertisement

Log in

DNMT3b SUMOylation Mediated MMP-2 Upregulation Contribute to Paclitaxel Induced Neuropathic Pain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Paclitaxel is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy (CIPN), which manifested as hyperalgesia and allodynia, and its mechanism remains largely unknown. The previous study has shown that matrix metalloproteinase-2 (MMP-2) plays a pivotal role in spinal nerve ligation (SNL) induced neuropathic pain, but its function in CIPN and exact molecular mechanisms underlying upregulation is not explored. Our present study revealed that MMP-2 is also upregulated in paclitaxel induced neuropathic pain (NP), and knockdown it by siRNA can ameliorate mechanical allodynia. Since DNA methylation is closely related to gene transcription, we explored the methylation status of the MMP-2 gene and demonstrated that MMP-2 upregulation is related to the reduced methylation level of its promoter. DNA methylation is mediated by DNA methyltransferases (DNMTs), and previous studies suggested that three main types of DNMTs can undergo SUMOylation. Our next study revealed that SUMO1 modification of DNMT3b is significantly enhanced. Intrathecal administration of SUMOylation inhibitor, ginkgolic acid (GA), could reverse enhanced SUMO1 modification of DNMT3b and upregulation of MMP-2 in the model rats. Further investigation suggested that DNMT3b binding activity to the promoter region of the MMP-2 gene is significantly decreased in paclitaxel treated rats, and the administration of GA can reverse these effects, which is also accompanied by changes in the promoter methylation status of the MMP-2 gene. Our study demonstrates that MMP-2 up-regulation mediated by DNMT3b SUMOylation is essential for paclitaxel induced NP development, which brings us new therapeutic options for CIPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155:654–662

    Article  Google Scholar 

  2. Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J (2019) Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci 20(6):1451

    Article  PubMed Central  Google Scholar 

  3. Nagasaka K, Yamanaka K, Ogawa S, Takamatsu H, Higo N (2017) Brain activity changes in a macaque model of oxaliplatin-induced neuropathic cold hypersensitivity. Sci Rep 7:4305

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J, Sorokin L (2019) The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol 75–76:102–113

    Article  PubMed  Google Scholar 

  5. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  CAS  PubMed  Google Scholar 

  6. Al-Dasooqi N, Wardill HR, Gibson RJ (2014) Gastrointestinal mucositis: the role of MMP-tight junction interactions in tissue injury. Pathol Oncol Res 20:485–491

    Article  CAS  PubMed  Google Scholar 

  7. Kawasaki Y, Xu Z-Z, Wang X, Park JY, Zhuang Z-Y, Tan P-H, Gao Y-J, Roy K, Corfas G, Lo EH, Ji R-R (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Penas C, Navarro X (2018) Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 12:158–158

    Article  PubMed  PubMed Central  Google Scholar 

  9. Laedermann CJ, Abriel H, Decosterd I (2015) Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 6:263–263

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garriga J, Laumet G, Chen S-R, Zhang Y, Madzo J, Issa J-PJ, Pan H-L, Jelinek J (2018) Nerve injury-induced chronic pain is associated with persistent DNA methylation reprogramming in dorsal root ganglion. J Neurosci 38:6090–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang L, Lutz BM, Bekker A, Tao YX (2015) Epigenetic regulation of chronic pain. Epigenomics 7:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19:81–92

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, He Y, Wang X, Liang Z, He G, Zhang P, Zhu H, Xu N, Liang S (2017) Protein SUMOylation modification and its associations with disease. Open Biol 7:170167

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  CAS  PubMed  Google Scholar 

  15. Enserink JM (2015) Sumo and the cellular stress response. Cell Div 10:4–4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    Article  CAS  PubMed  Google Scholar 

  17. Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 13:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Gao Y, Tian Q, Deng Q, Wang Y, Zhou T, Liu Q, Mei K, Wang Y, Liu H, Ma R, Ding Y, Rong W, Cheng J, Yao J, Xu TL, Zhu MX, Li Y (2018) TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain. Nat Commun 9:1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moutal A, Dustrude ET, Largent-Milnes TM, Vanderah TW, Khanna M, Khanna R (2018) Blocking CRMP2 SUMOylation reverses neuropathic pain. Mol Psychiatry 23:2119–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang ES, Park CW, Chung JH (2001) Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem Biophys Res Commun 289:862–868

    Article  CAS  PubMed  Google Scholar 

  21. Lee B, Muller MT (2009) SUMOylation enhances DNA methyltransferase 1 activity. Biochem J 421:449–461

    Article  CAS  PubMed  Google Scholar 

  22. Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD (2004) Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 32:598–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li D, Huang ZZ, Ling YZ, Wei JY, Cui Y, Zhang XZ, Zhu HQ, Xin WJ (2014) Up-regulation of CX3CL1 via nuclear factor-kappaB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology 122:1142–1151

    Article  Google Scholar 

  24. Shen Y, Li D, Li B, Xi P, Zhang Y, Jiang Y, Xu Y, Chen H, Xiong Y (2018) Up-regulation of CX3CL1 via STAT3 contributes to SMIR-induced chronic postsurgical pain. Neurochem Res 43:556–565

    Article  CAS  PubMed  Google Scholar 

  25. Li D, Huang ZZ, Ling YZ, Wei JY, Cui Y, Zhang XZ, Zhu HQ, Xin WJ (2015) Up-regulation of CX3CL1 via nuclear factor-κB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology 122:1142–1151

    Article  CAS  PubMed  Google Scholar 

  26. Mao Q, Wu S, Gu X, Du S, Mo K, Sun L, Cao J, Bekker A, Chen L, Tao YX (2019) DNMT3a-triggered downregulation of K(2p) 1.1 gene in primary sensory neurons contributes to paclitaxel-induced neuropathic pain. Int J Cancer 145:2122–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bell CG, Gao F, Yuan W, Roos L, Acton RJ, Xia Y, Bell J, Ward K, Mangino M, Hysi PG, Wang J, Spector TD (2018) Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci. Nat Commun 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wernig-Zorc S, Yadav MP, Kopparapu PK, Bemark M, Kristjansdottir HL, Andersson PO, Kanduri C, Kanduri M (2019) Global distribution of DNA hydroxymethylation and DNA methylation in chronic lymphocytic leukemia. Epigenetics Chromatin 12:4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  PubMed  Google Scholar 

  30. Henriet P, Emonard H (2019) Matrix metalloproteinase-2: Not (just) a “hero” of the past. Biochimie 166:223–232

    Article  CAS  PubMed  Google Scholar 

  31. Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G (2015) Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang B-C, Zhang W-W, Yang T, Guo C-Y, Cao D-L, Zhang Z-J, Gao Y-J (2018) Demethylation of G-protein-coupled receptor 151 promoter facilitates the binding of krüppel-like factor 5 and enhances neuropathic pain after nerve injury in mice. J Neurosci 38:10535–10551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Guo Q, Yan J, Yang M, Lin Y, Lin Z (2016) Role of DNA methyltransferases in the pathogenesis of neuropathic pain in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 41:578–585

    CAS  PubMed  Google Scholar 

  34. Saunders J, Hore Z, Gentry C, McMahon S, Denk F (2018) Negative evidence for a functional role of neuronal DNMT3a in persistent pain. Front Mol Neurosci 11:332–332

    Article  PubMed  PubMed Central  Google Scholar 

  35. Park J, Kim TY, Jung Y, Song SH, Kim SH, Oh DY, Im SA, Bang YJ (2008) DNA methyltransferase 3B mutant in ICF syndrome interacts non-covalently with SUMO-1. J Mol Med 86:1269–1277

    Article  CAS  PubMed  Google Scholar 

  36. Peres R, Furuya H, Pagano I, Shimizu Y, Hokutan K, Rosser CJ (2016) Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation. Oncotarget 7:43109–43123

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, Dai CY, Juo SH (2011) OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J 25:1718–1728

    Article  CAS  PubMed  Google Scholar 

  38. Martin S, Wilkinson KA, Nishimune A, Henley JM (2007) Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8:948–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  40. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  41. Wu SY, Chiang CM (2009) Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 28:1246–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. François-Moutal L, Dustrude ET, Wang Y, Brustovetsky T, Dorame A, Ju W, Moutal A, Perez-Miller S, Brustovetsky N, Gokhale V, Khanna M, Khanna R (2018) Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 159:2115–2127

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has not been previously published and has not been submitted elsewhere for consideration. This study was funded by the National Natural Science Foundation of China (81600955, 81971048), Natural Science Foundation of Shanghai (17ZR1438200), Shanghai Pujiang Program (2020PJD059) and "Deep Blue 123" Military Medical Research Special Key Research Project(2019YSL008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dai Li or Yuan-Chang Xiong.

Ethics declarations

Conflict of interest

All the contributing authors have seen and approved the manuscript. All other authors declare that they have no competing interests.

Ethical Approval

All procedures were approved by the Naval Medical University Animal Care and Use Committee and carried out following the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shen, YJ., Li, XJ. et al. DNMT3b SUMOylation Mediated MMP-2 Upregulation Contribute to Paclitaxel Induced Neuropathic Pain. Neurochem Res 46, 1214–1223 (2021). https://doi.org/10.1007/s11064-021-03260-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03260-x

Keywords

Navigation