Skip to main content
Log in

Calbindin-Positive Neurons Co-express Functional Markers in a Location-Dependent Manner Within the A11 Region of the Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The A11 region plays a role in numerous physiological functions, including pain and locomotor activity, and consists of a variety of neurons including GABAergic, calbindin positive (Calb+), and dopaminergic (DA) neurons. However, the neurochemical nature of Calb+ neurons and their regulatory role in the A11 region remain largely unknown. In this study, we examined the kind of functional markers co-expressed in the Calb+ neurons using sections from 8-week-old rats. To examine a marker related to classical neurotransmitters, we performed in situ hybridization for vesicular glutamate transporter 2 (vGluT2) or glutamate decarboxylase (GAD) 65 and 67, in conjunction with Calb immunohistochemistry. We found cellular co-expression of Calb with vGluT2 or GAD65/67 throughout the A11 region. Nearly all Calb+/GAD65/67+ neurons were found in the rostral-middle aspect of the A11 region. In contrast, Calb+/vGluT2+ neurons were found predominantly in the middle-caudal aspect of the A11 region. For receptors and neuropeptides, we performed immunohistochemistry for androgen receptor (AR), estrogen receptors (ERα and ERβ), and calcitonin gene-related peptide (CGRP). We found that Calb+ neurons co-expressed AR in the rostral aspect of the A11 region in both male and female rats. However, we rarely find cellular co-expression of Calb with ERα or ERβ in this region. For CGRP, we found both Calb+ neurons with or without CGRP expression. These results demonstrate that Calb+ neurons co-express many functional markers. Calb+ neurons have a distinct distribution pattern and may play a variety of regulatory roles, depending on their location within the A11 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study and materials used in this study are available from the corresponding author upon reasonable request.

References

  1. Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ (2018) Optogenetic activation of A11 region increases motor activity. Front Neural Circuits 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Charbit AR, Akerman S, Goadsby PJ (2011) Trigeminocervical complex responses after lesioning dopaminergic A11 nucleus are modified by dopamine and serotonin mechanisms. Pain 152:2365–2376

    Article  CAS  PubMed  Google Scholar 

  3. Charbit AR, Akerman S, Holland PR, Goadsby PJ (2009) Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci 29:12532–12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdallah K, Monconduit L, Artola A, Luccarini P, Dallel R (2015) GABAAergic inhibition or dopamine denervation of the A11 hypothalamic nucleus induces trigeminal analgesia. Pain 156:644–655

    Article  CAS  PubMed  Google Scholar 

  5. Thorpe AJ, Clair A, Hochman S, Clemens S (2011) Possible sites of therapeutic action in restless legs syndrome: focus on dopamine and α2δ ligands. Eur Neurol 66:18–29

    Article  PubMed  Google Scholar 

  6. Guo CN, Yang WJ, Zhan SQ, Yang XF, Chen MC, Fuller PM, Lu J (2017) Targeted disruption of supraspinal motor circuitry reveals a distributed network underlying restless legs syndrome (RLS)-like movements in the rat. Sci Rep 7:9905–9919

    Article  PubMed  PubMed Central  Google Scholar 

  7. Romero-Peralta S, Cano-Pumarega I, García-Borreguero D (2020) Emerging concepts of the pathophysiology and adverse outcomes of restless legs syndrome. Chest 158:1218–1229

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yamaguchi T, Wang HL, Li X, Ng TH, Morales M (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31:8476–8490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Qi J, Yamaguchi T, Wang HL, Morales M (2013) Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct Funct 218:1159–1176

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi T, Qi J, Wang HL, Zhang S, Morales M (2015) Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur J Neurosci 41:760–772

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Omelchenko N, Sesack SR (2009) Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse 63:895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dobi A, Margolis EB, Wang HL, Harvey BK, Morales M (2010) Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J Neurosci 30:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  CAS  PubMed  Google Scholar 

  16. Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82:966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olson VG, Nestler EJ (2007) Topographical organization of GABAergic neurons within the ventral tegmental area of the rat. Synapse 61:87–95

    Article  CAS  PubMed  Google Scholar 

  18. Mongia S, Yamaguchi T, Liu B, Zhang S, Wang H, Morales M (2019) The ventral tegmental area has calbindin neurons with the capability to co-release glutamate and dopamine into the nucleus accumbens. Eur J Neurosci 50:3968–3984

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arai R, Jacobowitz DM, Deura S (1994) Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus. Brain Res Bull 33:595–614

    Article  CAS  PubMed  Google Scholar 

  20. Frassoni C, Spreafico R, Bentivoglio M (1997) Glutamate, aspartate and co-localization with calbindin in the medial thalamus. An immunohistochemical study in the rat. Exp Brain Res 115:95–104

    Article  CAS  PubMed  Google Scholar 

  21. Ozawa H, Yamaguchi T, Hamaguchi S, Yamaguchi S, Ueda S (2017) Three types of A11 neurons project to the rat spinal cord. Neurochem Res 42:2142–2153

    Article  CAS  PubMed  Google Scholar 

  22. Kosaka T, Kosaka K, Hataguchi Y, Nagatsu I, Wu JY, Ottersen OP, Storm-Mathisen J, Hama K (1987) Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp Brain Res 66:191–210

    Article  CAS  PubMed  Google Scholar 

  23. Yasui Y, Saper CB, Cechetto DF (1989) Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J Comp Neurol 290:487–501

    Article  CAS  PubMed  Google Scholar 

  24. Yasui Y, Saper CB, Cechetto DF (1991) Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. J Comp Neurol 308:293–310

    Article  CAS  PubMed  Google Scholar 

  25. Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M (2005) Calcitonin gene-related peptide-containing pathways in the rat forebrain. J Comp Neurol 489:92–119

    Article  CAS  PubMed  Google Scholar 

  26. Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294:76–95

    Article  CAS  PubMed  Google Scholar 

  27. Paxinos G, Watson C (2007) The raet brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam/Boston

    Google Scholar 

  28. Pappas SS, Tiernan CT, Behrouz B, Jordan CL, Breedlove SM, Goudreau JL, Lookingland KJ (2010) Neonatal androgen-dependent sex differences in lumbar spinal cord dopamine concentrations and the number of A11 diencephalospinal dopamine neurons. J Comp Neurol 518:2423–2436

    CAS  PubMed  Google Scholar 

  29. Pan PY, Ryan TA (2012) Calbindin controls release probability in ventral tegmental area dopamine neurons. Nat Neurosci 15:813–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van den Pol AN (1986) Tyrosine hydroxylase immunoreactive neurons throughout the hypothalamus receive glutamate decarboxylase immunoreactive synapses: a double pre-embedding immunocytochemical study with particulate silver and HRP. J Neurosci 6:877–891

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pappas SS, Kennedy T, Goudreau JL, Lookingland KJ (2011) Opioid-mediated regulation of A11 diencephalospinal dopamine neurons: pharmacological evidence of activation by morphine. Neuropharmacology 61:614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moriizumi T, Hattori T (1992) Anatomical and functional compartmentalization of the subparafascicular thalamic nucleus in the rat. Exp Brain Res 90:175–179

    Article  CAS  PubMed  Google Scholar 

  33. Cortés R, Ceccatelli S, Schalling M, Hökfelt T (1990) Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study. Synapse 6:369–391

    Article  PubMed  Google Scholar 

  34. Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14:1834–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heritage AS, Stumpf WE, Sar M, Grant LD (1980) Brainstem catecholamine neurons are target sites for sex steroid hormones. Science 207:1377–1379

    Article  CAS  PubMed  Google Scholar 

  36. Jahan MR, Kokubu K, Islam MN, Matsuo C, Yanai A, Wroblewski G, Fujinaga R, Shinoda K (2015) Species differences in androgen receptor expression in the medial preoptic and anterior hypothalamic areas of adult male and female rodents. Neuroscience 284:943–961

    Article  CAS  PubMed  Google Scholar 

  37. Sickel MJ, McCarthy MM (2000) Calbindin-D28k immunoreactivity is a marker for a subdivision of the sexually dimorphic nucleus of the preoptic area of the rat: developmental profile and gonadal steroid modulation. J Neuroendocrinol 12:397–402

    Article  CAS  PubMed  Google Scholar 

  38. Sá SI, Fonseca BM (2017) Dynamics of progesterone and estrogen receptor alpha in the ventromedial hypothalamus. J Endocrinol 233:197–207

    Article  PubMed  Google Scholar 

  39. Lonstein JS, Blaustein JD (2004) Immunocytochemical investigation of nuclear progestin receptor expression within dopaminergic neurones of the female rat brain. J Neuroendocrinol 16:534–543

    Article  CAS  PubMed  Google Scholar 

  40. McCutcheon JE, Marinelli M (2009) Age matters. Eur J Neurosci 29:997–1014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Dokkyo Medical University and by the Grants-in-Aid for Scientific Research (KAKENHI, Grant Number JP18K16495) from Japan Society for the Promotion of Science (JSPS). We would like to thank Ms. Shukuko Minami for her technical assistance and Ms. Fusae Terauchi for her assistance.

Funding

This study was funded by the Grants-in-Aid for Scientific Research (KAKENHI), Grant Number JP18K16495 from Japan Society for the Promotion of Science (JSPS) for HO.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Tsuyoshi Yamaguchi and Hidechika Ozawa. The first draft of the manuscript was written by Tsuyoshi Yamaguchi and Hidechika Ozawa, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tsuyoshi Yamaguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 475 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, T., Ozawa, H., Yamaguchi, S. et al. Calbindin-Positive Neurons Co-express Functional Markers in a Location-Dependent Manner Within the A11 Region of the Rat Brain. Neurochem Res 46, 853–865 (2021). https://doi.org/10.1007/s11064-020-03217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03217-6

Keywords

Navigation