Skip to main content
Log in

Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The A10 region contains different neurons: dopamine (expressing tyrosine hydroxylase; TH), GABA, glutamate-only (expressing the vesicular glutamate transporter 2; VGluT2), and TH-VGluT2 (coexpressing TH and VGluT2). We used three methods to investigate proteins necessary for the synthesis (aromatic l-amino acid decarboxylase, AADC) or transport (vesicular monoamine transporter; VMAT2 or dopamine transporter; DAT) of dopamine within TH neurons in the A10 region. By in situ hybridization–immunohistochemistry, we found that all TH neurons in the A10 region had AADC, but not all had VMAT2, DAT or D2 receptors (D2R). To determine whether TH-VGluT2 neurons account for TH neurons lacking these dopamine markers, we implemented an anatomical “mirror technique”, and found that not all TH-VGluT2 neurons lacked VMAT2, DAT or D2R. Next, by quantitative RT-PCR of individual micro-dissected TH neurons, we discovered two classes of TH-VGluT2 and three classes of TH-only neurons with different latero-medial distribution. Some of the TH-VGluT2 neurons had both VMAT2 and DAT (TH-VGluT2 Class 1); others lacked detectable levels of both transporters (TH-VGluT2 Class 2). Most of the TH-only neurons contained VMAT2 and DAT (TH-only Class 1), a few had DAT without detectable VMAT2 (TH-only Class 2), and others lacked detectable levels of both transporters (TH-only Class 3). We concluded that (a) the majority of TH neurons lacking DAT are TH-VGluT2 neurons, (b) very few TH-only neurons express DAT without VMAT2, and (c) TH-VGluT2 neurons lacking DAT also lack VMAT2. Thus, the A10 region contains dopamine neurons with differential compartmentalization and unique signaling properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfahel-Kakunda A, Silverman WF (1997) Calcium-binding proteins in the substantia nigra and ventral tegmental area during development: correlation with dopaminergic compartmentalization. Brain Res 103:9–20

    Article  CAS  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68

    PubMed  CAS  Google Scholar 

  • Bourque MJ, Trudeau LE (2000) GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur J Neurosci 12:3172–3180

    Article  PubMed  CAS  Google Scholar 

  • Cameron DL, Wessendorf MW, Williams JT (1997) A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids. Neuroscience 77:155–166

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    PubMed  CAS  Google Scholar 

  • Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    Article  PubMed  CAS  Google Scholar 

  • Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788–2797

    Article  PubMed  CAS  Google Scholar 

  • German DC, Manaye KF (1993) Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol 331:297–309

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463–3481

    PubMed  CAS  Google Scholar 

  • Halliday GM, Tork I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252:423–445

    Article  PubMed  CAS  Google Scholar 

  • Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol 483:351–373

    Article  PubMed  Google Scholar 

  • Jayaraman A, Nishimori T, Dobner P, Uhl GR (1990) Cholecystokinin and neurotensin mRNAs are differentially expressed in subnuclei of the ventral tegmental area. J Comp Neurol 296:291–302

    Article  PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468

    PubMed  CAS  Google Scholar 

  • Joyce MP, Rayport S (2000) Mesoaccumbens dopamine neuron synapses reconstructed in vitro are glutamatergic. Neuroscience 99:445–456

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Kawasaki A, Sakata-Haga H, Fukui Y, Kawano H, Nogami H, Hisano S (2006) Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J Comp Neurol 498:581–592

    Article  PubMed  CAS  Google Scholar 

  • Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  PubMed  CAS  Google Scholar 

  • Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862

    Article  PubMed  CAS  Google Scholar 

  • Luo AH, Georges FE, Aston-Jones GS (2008) Novel neurons in ventral tegmental area fire selectively during the active phase of the diurnal cycle. Eur J Neurosci 27:408–422

    Article  PubMed  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006a) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907–924

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006b) Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA 103:2938–2942

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Pickel VM (2012) Insights to drug addiction derived from ultrastructural views of the mesocorticolimbic system. Ann N Y Acad Sci 1248:71–88

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Wang SD (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system. J Neurosci 22:6732–6741

    PubMed  CAS  Google Scholar 

  • Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA (2008) Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152:1024–1031

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22:1290–1302

    PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Chan J, Pohorille A, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907

    PubMed  CAS  Google Scholar 

  • Omelchenko N, Sesack SR (2006) Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. J Comp Neurol 494:863–875

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam/Boston

    Google Scholar 

  • Phillipson OT (1979a) A Golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat. J Comp Neurol 187:99–115

    Article  PubMed  CAS  Google Scholar 

  • Phillipson OT (1979b) The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J Comp Neurol 187:85–98

    Article  PubMed  CAS  Google Scholar 

  • Sanna PP, King AR, van der Stap LD, Repunte-Canonigo V (2005) Gene profiling of laser-microdissected brain regions and sub-regions. Brain Res Brain Res Protoc 15:66–74

    Article  PubMed  CAS  Google Scholar 

  • Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342:321–334

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18:2697–2708

    PubMed  CAS  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Rayport S (2000) Dale’s principle and glutamate corelease from ventral midbrain dopamine neurons. Amino Acids 19:45–52

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S (1998) Dopamine neurons make glutamatergic synapses in vitro. J Neurosci 18:4588–4602

    PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  PubMed  CAS  Google Scholar 

  • Tagliaferro P, Morales M (2008) Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol 506:616–626

    Article  PubMed  CAS  Google Scholar 

  • Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, Berlin J, Deisseroth K, Rice ME, Tepper JM, Koos T (2010) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci 30:7105–7110

    Article  PubMed  CAS  Google Scholar 

  • Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A (2003) Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 39:401–407

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Morales M (2008) Corticotropin-releasing factor binding protein within the ventral tegmental area is expressed in a subset of dopaminergic neurons. J Comp Neurol 509:302–318

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25:106–118

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Wang HL, Li X, Ng TH, Morales M (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31:8476–8490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute on Drug Abuse. We thank Bing Liu for her help in processing brain tissue.

Conflict of interest

The authors declare that they do not have any conflicts of interest (financial or otherwise) related to the data presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisela Morales.

Additional information

X. Li and J. Qi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Qi, J., Yamaguchi, T. et al. Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct Funct 218, 1159–1176 (2013). https://doi.org/10.1007/s00429-012-0452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0452-z

Keywords

Navigation