Skip to main content
Log in

Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metabolism and redox signalling share critical nodes in the nervous system. In the last years, a series of major findings have challenged the current vision on how neural reactive oxygen species (ROS) are produced and handled in the nervous system. Once regarded as deleterious by-products, ROS are now shown to be essential for a metabolic and redox crosstalk. In turn, this coupling defines neural viability and function to control behaviour or leading to neurodegeneration when compromised. Findings like a different assembly of mitochondrial respiratory supercomplexes in neurons and astrocytes stands behind a divergent production of ROS in either cell type, more prominent in astrocytes. ROS levels are however tightly controlled by an antioxidant machinery in astrocytes, assumed as more efficient than that of neurons, to regulate redox signalling. By exerting this control in ROS abundance, metabolic functions are finely tuned in both neural cells. Further, a higher engagement of mitochondrial respiration and oxidative function in neurons, underpinned by redox equivalents supplied from the pentose phosphate pathway and from glia, differs from the otherwise strong glycolytic capacity of astrocytes. Here, we recapitulate major findings on how ROS and metabolism differ between neural cells but merge to define reciprocal signalling pathways, ultimately defining neural function and fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arellano JI, Rakic P (2011) Gone with the wean. Nature 478:333–334. https://doi.org/10.1038/478333a

    Article  CAS  PubMed  Google Scholar 

  2. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560. https://doi.org/10.1038/s41591-019-0375-9

    Article  CAS  PubMed  Google Scholar 

  3. Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. https://doi.org/10.1038/3305

    Article  CAS  PubMed  Google Scholar 

  4. Spalding KL, Bergmann O, Alkass K et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. https://doi.org/10.1016/j.cell.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattson MP, Liu D (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. NeuroMolecular Med 2:215–232. https://doi.org/10.1385/NMM:2:2:215

    Article  CAS  PubMed  Google Scholar 

  6. McLaughlin BA, Nelson D, Erecińska M, Chesselet M-F (2002) Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. J Neurochem 70:2406–2415. https://doi.org/10.1046/j.1471-4159.1998.70062406.x

    Article  Google Scholar 

  7. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34. https://doi.org/10.1186/1478-811X-11-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quintana-Cabrera R, Bolaños JP (2013) Glutathione and γ-glutamylcysteine in hydrogen peroxide detoxification. Methods Enzymol 527:129–144. https://doi.org/10.1016/B978-0-12-405882-8.00007-6

    Article  CAS  PubMed  Google Scholar 

  9. Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326. https://doi.org/10.1016/j.tcb.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  10. Wamelink MMC, Struys EA, Jakobs C (2008) The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis 31:703–717. https://doi.org/10.1007/s10545-008-1015-6

    Article  CAS  PubMed  Google Scholar 

  11. Bouzier-Sore AK, Bolaños JP, Bolaños JP (2015) Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front Aging Neurosci 7:1–5. https://doi.org/10.3389/fnagi.2015.00089

    Article  Google Scholar 

  12. Dringen R, Hoepken HH, Minich T, Ruedig C (2007) 1.3 pentose phosphate pathway and NADPH metabolism. In: Handbook of neurochemistry and molecular neurobiology. Springer US, Boston, MA, pp 41–62. https://doi.org/10.1007/978-0-387-30411-3_3

  13. Bolaños JP, Heales SJR, Land JM, Clark JB (2002) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972. https://doi.org/10.1046/j.1471-4159.1995.64051965.x

    Article  Google Scholar 

  14. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    Article  CAS  Google Scholar 

  15. Fernandez-Fernandez S, Bobo-Jimenez V, Requejo-Aguilar R et al (2018) Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol 19:52–61. https://doi.org/10.1016/J.REDOX.2018.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609. https://doi.org/10.1038/ncpneuro0924

    Article  CAS  PubMed  Google Scholar 

  17. Dalton TP, Dieter MZ, Yang Y et al (2000) Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun 279:324–329. https://doi.org/10.1006/bbrc.2000.3930

    Article  CAS  PubMed  Google Scholar 

  18. Feng W, Rosca M, Fan Y et al (2017) Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Hum Mol Genet 26:1376–1390. https://doi.org/10.1093/hmg/ddx040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butterfield DA, Gu L, Di DF, Robinson RAS (2014) Mass spectrometry and redox proteomics: applications in disease. Mass Spectrom Rev 33:277–301. https://doi.org/10.1002/mas.21374

    Article  CAS  PubMed  Google Scholar 

  20. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314. https://doi.org/10.1038/cdd.2009.107

    Article  CAS  PubMed  Google Scholar 

  21. Davey GP, Canevari L, Clark JB (2002) Threshold effects in synaptosomal and nonsynaptic mitochondria from hippocampal CA1 and paramedian neocortex brain regions. J Neurochem 69:2564–2570. https://doi.org/10.1046/j.1471-4159.1997.69062564.x

    Article  Google Scholar 

  22. Diaz-Hernandez JI, Almeida A, Delgado-Esteban M et al (2005) Knockdown of glutamate-cysteine by ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J Biol Chem. https://doi.org/10.1074/jbc.M507065200

    Article  PubMed  Google Scholar 

  23. Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V et al (2012) γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun 3:718. https://doi.org/10.1038/ncomms1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Fabuel I, Le Douce J, Logan A et al (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci USA 113:13063–13068. https://doi.org/10.1073/pnas.1613701113

    Article  CAS  PubMed  Google Scholar 

  26. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472. https://doi.org/10.1016/J.EXGER.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Bolaños JP, Heales SJR, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972. https://doi.org/10.1046/j.1471-4159.1995.64051965.x

    Article  PubMed  Google Scholar 

  29. Almeida A, Bolaños JP (2001) A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 77:676–690. https://doi.org/10.1046/j.1471-4159.2001.00276.x

    Article  CAS  PubMed  Google Scholar 

  30. Porras OH, Loaiza A, Barros LF (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci 24:9669–9673. https://doi.org/10.1523/JNEUROSCI.1882-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delgado-Esteban M, Almeida A, Bolaños JP (2002) d-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 75:1618–1624. https://doi.org/10.1046/j.1471-4159.2000.0751618.x

    Article  Google Scholar 

  32. Beltran B, Mathur A, Duchen MR et al (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci 97:14602–14607. https://doi.org/10.1073/pnas.97.26.14602

    Article  CAS  PubMed  Google Scholar 

  33. Bolaños JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–149. https://doi.org/10.1016/j.tibs.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  34. Almeida A, Almeida J, Bolaños JP, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98:15294–15299. https://doi.org/10.1073/pnas.261560998

    Article  CAS  PubMed  Google Scholar 

  35. Bolaños JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139:115–125. https://doi.org/10.1111/jnc.13486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herrero-Mendez A, Almeida A, Fernández E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752. https://doi.org/10.1038/ncb1881

    Article  CAS  PubMed  Google Scholar 

  37. Chaban Y, Boekema EJ, Dudkina NV (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta 1837:418–426. https://doi.org/10.1016/j.bbabio.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  38. Enríquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561. https://doi.org/10.1146/annurev-physiol-021115-105031

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Fabuel I, Martin-Martin L, Resch-Beusher M et al (2017) Mitochondrial respiratory chain disorganization in Parkinson’s disease-relevant PINK1 and DJ1 mutants. Neurochem Int 109:101–105

    Article  CAS  Google Scholar 

  40. Genova ML, Lenaz G (2015) The interplay between respiratory supercomplexes and ROS in aging. Antioxid Redox Signal 23:208–238. https://doi.org/10.1089/ars.2014.6214

    Article  CAS  PubMed  Google Scholar 

  41. Gómez LA, Monette JS, Chavez JD et al (2009) Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys 490:30–35. https://doi.org/10.1016/j.abb.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whitworth AJ, Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 44:47–53. https://doi.org/10.1016/j.gde.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  43. Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E et al (2014) PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun 5:4514. https://doi.org/10.1038/ncomms5514

    Article  CAS  PubMed  Google Scholar 

  44. Prestel J, Gempel K, Hauser TK et al (2008) Clinical and molecular characterisation of a Parkinson family with a novel PINK1 mutation. J Neurol 255:643–648. https://doi.org/10.1007/s00415-008-0763-4

    Article  CAS  PubMed  Google Scholar 

  45. Fernandez-Fernandez S, Almeida A, Bolaños JP et al (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11. https://doi.org/10.1042/BJ20111943

    Article  CAS  PubMed  Google Scholar 

  46. Bolaños JP, Duchen MR, Hampton MB et al (2016) Introduction to special issue on mitochondrial redox signaling in health and disease. Free Radic Biol Med 100:1–4

    Article  Google Scholar 

  47. Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600. https://doi.org/10.1016/j.tins.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  48. Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32:125–130. https://doi.org/10.1016/j.tips.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  49. Bolaños JP, Moro MA, Lizasoain I, Almeida A (2009) Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: therapeutic implications. Adv Drug Deliv Rev 61:1299–1315. https://doi.org/10.1016/j.addr.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  50. Papadia S, Soriano FX, Léveillé F et al (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487. https://doi.org/10.1038/nn2071

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baxter PS, Bell KFS, Hasel P et al (2015) Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun 6:6761. https://doi.org/10.1038/ncomms7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deighton RF, Markus NM, Al-Mubarak B et al (2014) Nrf2 target genes can be controlled by neuronal activity in the absence of Nrf2 and astrocytes. Proc Natl Acad Sci 111:E1818–E1820. https://doi.org/10.1073/pnas.1402097111

    Article  CAS  PubMed  Google Scholar 

  53. Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  CAS  Google Scholar 

  54. Bolaños JP, Bolanos JP, Bolaños JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139:115–125. https://doi.org/10.1111/jnc.13486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bell KFS, Al-Mubarak B, Martel M-A et al (2015) Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat Commun 6:7066. https://doi.org/10.1038/ncomms8066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A et al (2015) Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death Differ. https://doi.org/10.1038/cdd.2015.49

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional Regulation by Nrf2. Antioxid Redox Signal 29:1727–1745. https://doi.org/10.1089/ars.2017.7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi A, Kang M-I, Watai Y et al (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 26:221–229. https://doi.org/10.1128/MCB.26.1.221-229.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jha MK, Morrison BM (2018) Glia-neuron energy metabolism in health and diseases: new insights into the role of nervous system metabolic transporters. Exp Neurol 309:23–31. https://doi.org/10.1016/J.EXPNEUROL.2018.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Habas A, Hahn J, Wang X, Margeta M (2013) Neuronal activity regulates astrocytic Nrf2 signaling. Proc Natl Acad Sci 110:18291–18296. https://doi.org/10.1073/pnas.1208764110

    Article  PubMed  Google Scholar 

  61. Dringen R, Brandmann M, Hohnholt MC, Blumrich E-M (2015) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res 40:2570–2582. https://doi.org/10.1007/s11064-014-1481-1

    Article  CAS  PubMed  Google Scholar 

  62. Hilgier W, Węgrzynowicz M, Ruszkiewicz J et al (2010) Direct exposure to ammonia and hyperammonemia increase the extracellular accumulation and degradation of astroglia-derived glutathione in the Rat Prefrontal Cortex. Toxicol Sci 117:163–168. https://doi.org/10.1093/toxsci/kfq171

    Article  CAS  PubMed  Google Scholar 

  63. Bota DA, Davies KJA (2016) Mitochondrial Lon protease in human disease and aging: including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 100:188–198. https://doi.org/10.1016/j.freeradbiomed.2016.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baxter PS, Hardingham GE (2016) Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic Biol Med 100:147–152. https://doi.org/10.1016/j.freeradbiomed.2016.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maestre C, Delgado-Esteban M, Gomez-Sanchez JC et al (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27:2736–2745. https://doi.org/10.1038/emboj.2008.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez-Rodriguez P, Almeida A, Bolaños JP (2013) Brain energy metabolism in glutamate-receptor activation and excitotoxicity: Role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int 62:750–756. https://doi.org/10.1016/j.neuint.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  67. Bell KF, Al-Mubarak B, Fowler JH et al (2011) Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc Natl Acad Sci 108:E1–E2. https://doi.org/10.1073/pnas.1015229108

    Article  PubMed  Google Scholar 

  68. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr, Biol, p 24

    Google Scholar 

  69. Schulz TJ, Zarse K, Voigt A et al (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293. https://doi.org/10.1016/j.cmet.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  70. López-otín C, Blasco MA, Partridge L, Serrano M (2013) Europe PMC Funders Group the hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039.The

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V et al (2019) Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 1:201. https://doi.org/10.1038/s42255-018-0031-6

    Article  CAS  PubMed  Google Scholar 

  72. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249. https://doi.org/10.1038/sj.jcbfm.9600343

    Article  CAS  PubMed  Google Scholar 

  73. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901. https://doi.org/10.1016/J.NEURON.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  74. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378. https://doi.org/10.3389/fncel.2014.00378

    Article  PubMed  PubMed Central  Google Scholar 

  75. Oliveira JF, Sardinha VM, Guerra-Gomes S et al (2015) Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 38:535–549. https://doi.org/10.1016/j.tins.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  76. Allen NJ, Barres BA (2009) Glia—more than just brain glue. Nature 457:675–677. https://doi.org/10.1038/457675a

    Article  CAS  PubMed  Google Scholar 

  77. Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90:875S–880S. https://doi.org/10.3945/ajcn.2009.27462CC

    Article  CAS  PubMed  Google Scholar 

  78. Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na +–Ca 2+ cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 56:59–68. https://doi.org/10.1002/glia.20589

    Article  PubMed  Google Scholar 

  79. Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    Article  CAS  Google Scholar 

  80. Bittner CX, Valdebenito R, Ruminot I et al (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci 31:4709–4713. https://doi.org/10.1523/JNEUROSCI.5311-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Schaftingen E, Lederer B, Bartrons R, Hers H-G (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers: application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129:191–195. https://doi.org/10.1111/j.1432-1033.1982.tb07039.x

    Article  PubMed  Google Scholar 

  82. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166. https://doi.org/10.1038/jcbfm.2011.149

    Article  CAS  PubMed  Google Scholar 

  83. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271. https://doi.org/10.1002/glia.20557

    Article  PubMed  Google Scholar 

  84. Suh SW, Bergher JP, Anderson CM et al (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([RR *, S *]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1 %3ci%3e. J Pharmacol Exp Ther 321:45–50. https://doi.org/10.1124/jpet.106.115550

    Article  CAS  PubMed  Google Scholar 

  85. Bouzier-Sore A-K, Voisin P, Bouchaud V et al (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24:1687–1694. https://doi.org/10.1111/j.1460-9568.2006.05056.x

    Article  PubMed  Google Scholar 

  86. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  87. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625. https://doi.org/10.1073/PNAS.91.22.10625

    Article  CAS  PubMed  Google Scholar 

  88. Mächler P, Wyss MT, Elsayed M et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23:94–102. https://doi.org/10.1016/j.cmet.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  89. Volkenhoff A, Weiler A, Letzel M et al (2015) Glial glycolysis is essential for neuronal survival in drosophila. Cell Metab 22:437–447. https://doi.org/10.1016/j.cmet.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  90. Lu W, Huang J, Sun S et al (2015) Changes in lactate content and monocarboxylate transporter 2 expression in Aβ25-35-treated rat model of Alzheimer’s disease. Neurol Sci 36:871–876. https://doi.org/10.1007/s10072-015-2087-3

    Article  PubMed  Google Scholar 

  91. Perkins M, Wolf AB, Chavira B et al (2016) Altered energy metabolism pathways in the posterior cingulate in young adult apolipoprotein E ɛ4 carriers. J Alzheimer’s Dis 53:95–106. https://doi.org/10.3233/JAD-151205

    Article  CAS  Google Scholar 

  92. Lee Y, Morrison BM, Li Y et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448. https://doi.org/10.1038/nature11314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fünfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. https://doi.org/10.1038/nature11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Amaral AI, Hadera MG, Tavares JM et al (2016) Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 64:21–34. https://doi.org/10.1002/glia.22900

    Article  PubMed  Google Scholar 

  95. Saab AS, Tzvetavona ID, Trevisiol A et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132. https://doi.org/10.1016/J.NEURON.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  96. Baltan S (2015) Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health? Metab Brain Dis 30:25–30. https://doi.org/10.1007/s11011-014-9595-3

    Article  CAS  PubMed  Google Scholar 

  97. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597. https://doi.org/10.1016/J.TINS.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/J.CMET.2011.08.016

    Article  PubMed  Google Scholar 

  99. Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30:1295–1304. https://doi.org/10.1007/s11064-005-8801-4

    Article  CAS  PubMed  Google Scholar 

  100. Barros LF (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63:149–159. https://doi.org/10.1016/J.BRAINRESREV.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  101. Allaman I, Bélanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87. https://doi.org/10.1016/j.tins.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  102. Kasischke KA (2015) 2014 update of the original article: Kasischke KA (2009) Activity-dependent Metabolism in Glia and Neurons. In: Squire LR (ed) New encyclopedia of neuroscience, vol 1. Elsevier Ltd., Oxford, UK, pp 53–60. https://doi.org/10.1016/B978-0-12-801238-3.04487-1

  103. Mason S (2017) Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond. Front Neurosci 11:43

    PubMed  PubMed Central  Google Scholar 

  104. Eraso-Pichot A, Brasó-Vives M, Golbano A et al (2018) GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia 66:1724–1735. https://doi.org/10.1002/glia.23330

    Article  PubMed  Google Scholar 

  105. Pellerin L, Magistretti PJ (2004) Let there be (NADH) light. Science 305:50–52

    Article  CAS  Google Scholar 

  106. Liemburg-Apers DC, Willems PHGM, Koopman WJH, Grefte S (2015) Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 89:1209–1226. https://doi.org/10.1007/s00204-015-1520-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mullarky E, Cantley LC (2015) Diverting glycolysis to combat oxidative stress. Springer, Berlin

    Book  Google Scholar 

  108. Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños JP (2012) Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 19:1582–1589. https://doi.org/10.1038/cdd.2012.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ferreira IL, Cunha-Oliveira T, Nascimento MV et al (2011) Bioenergetic dysfunction in Huntington’s disease human cybrids. Exp Neurol 231:127–134. https://doi.org/10.1016/j.expneurol.2011.05.024

    Article  CAS  PubMed  Google Scholar 

  110. Soucek T, Cumming R, Dargusch R et al (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39:43–56. https://doi.org/10.1016/s0896-6273(03)00367-2

    Article  CAS  PubMed  Google Scholar 

  111. Neves Carvalho A, Firuzi O, Joao Gama M et al (2017) Oxidative stress and antioxidants in neurological diseases: is there still hope? Curr Drug Targets. https://doi.org/10.2174/1389450117666160401120514

    Article  Google Scholar 

  112. Juránek I, Nikitovic D, Kouretas D et al (2013) Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants. Food Chem Toxicol 61:240–247. https://doi.org/10.1016/j.fct.2013.08.074

    Article  CAS  PubMed  Google Scholar 

  113. Kamat CD, Gadal S, Mhatre M et al (2008) Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimer’s Dis 15:473–493. https://doi.org/10.3233/JAD-2008-15314

    Article  CAS  Google Scholar 

  114. De Pittà M, Brunel N, Volterra A (2016) Astrocytes: orchestrating synaptic plasticity? Neuroscience 323:43–61. https://doi.org/10.1016/J.NEUROSCIENCE.2015.04.001

    Article  PubMed  Google Scholar 

  115. Adamsky A, Goshen I (2018) Astrocytes in memory function: pioneering findings and future directions. Neuroscience 370:14–26. https://doi.org/10.1016/j.neuroscience.2017.05.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Juan P. Bolaños for his continuous support, mentoring and insightful scientific input. This publication is supported by funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 793987. Figures were modified from templates provided by Servier Medical Art.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Quintana-Cabrera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Professor Juan Bolanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Gutiérrez, C., Jiménez-Blasco, D. & Quintana-Cabrera, R. Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface. Neurochem Res 46, 23–33 (2021). https://doi.org/10.1007/s11064-020-02965-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02965-9

Keywords

Navigation