Skip to main content

Advertisement

Log in

MicroRNAs and Child Neuropsychiatric Disorders: A Brief Review

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that regulate gene expression through posttranscriptional mechanisms via degradation or inhibition of specific mRNAs targets. In recent years, abundant studies have illustrated the relevance of miRNAs in human psychopathology. In this current review, neuropsychiatric disorders with moderate to high prevalence among children and adolescents such as Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder, Dyslexia, Epilepsy, Schizophrenia and Tourette Syndrome were discussed focusing on the functional consequence of altered miRNA expression during the development of such diseases. The insight about the roles that miRNAs play in central nervous systems development such as cell proliferation and differentiation, synaptogenesis, synaptic plasticity, and apoptosis might be the key to explicate novel biomarkers for diagnosis and prognosis of these disorders, as well as the finding of new targets for drug development for therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu L, Li H, Jia CY et al (2012) MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBS Lett 586:1038–1043. https://doi.org/10.1016/j.febslet.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  2. Tonacci A, Bagnato G, Pandolfo G et al (2019) MicroRNA cross-involvement in autism spectrum disorders and atopic dermatitis: a literature review. J Clin Med 8:88. https://doi.org/10.3390/jcm8010088

    Article  CAS  PubMed Central  Google Scholar 

  3. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097

    Article  CAS  Google Scholar 

  4. Geaghan M, Cairns MJ (2017) Small RNA dysregulation in neurocognitive and neuropsychiatric disorders. In: Geaghan M, Cairns MJ (eds) Essentials of noncoding RNA in neuroscience: ontogenetics, plasticity of the vertebrate brain. Academic Press, Cambridge

    Google Scholar 

  5. Kieling C, Baker-Henningham H, Belfer M et al (2011) Child and adolescent mental health worldwide: evidence for action. Lancet 378:1515–1525. https://doi.org/10.1016/S0140-6736(11)60827-1

    Article  PubMed  Google Scholar 

  6. Mash EJ, Barkley RA (2014) Child psychopathology. Guilford Publications, New York

    Google Scholar 

  7. Kreth S, Hübner M, Hinske LC (2018) MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth Analg 126:670–681

    Article  CAS  Google Scholar 

  8. Hicks SD, Middleton FA (2016) A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psychiatry 7:176. https://doi.org/10.3389/fpsyt.2016.00176

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu D, Jiao X, Cao T, Huang F (2018) Serum miRNA expression profiling reveals miR-486-3p may play a significant role in the development of autism by targeting ARID1B. NeuroReport 29:1431–1436. https://doi.org/10.1097/WNR.0000000000001107

    Article  CAS  PubMed  Google Scholar 

  10. Ka M, Chopra DA, Dravid SM, Kim WY (2016) Essential roles for ARID1B in dendritic arborization and spine morphology of developing pyramidal neurons. J Neurosci 36:2723–2742

    Article  CAS  Google Scholar 

  11. Shen L, Lin Y, Sun Z et al (2016) Knowledge-guided bioinformatics model for identifying autism spectrum disorder diagnostic microRNA biomarkers. Sci Rep 6:39663. https://doi.org/10.1038/srep39663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Banerjee-Basu S, Larsen E, Muend S (2014) Common microRNAs target established ASD genes. Front Neurol 5:205

    Article  Google Scholar 

  13. Huang F, Long Z, Chen Z et al (2015) Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. PLoS ONE 10:e0129052. https://doi.org/10.1371/journal.pone.0129052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin PM, Yang X, Robin N et al (2013) A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl Psychiatry. https://doi.org/10.1038/tp.2013.75

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vasu M, Anitha A, Thanseem I et al (2014) Serum microRNA profiles in children with autism. Mol Autism 5:40. https://doi.org/10.1186/2040-2392-5-40

    Article  CAS  Google Scholar 

  16. Kichukova TM, Popov NT, Ivanov IS, Vachev TI (2017) Profiling of circulating serum microRNAs in children with autism spectrum disorder using stem-loop qRT-PCR assay. Folia Med 59:43–52. https://doi.org/10.1515/folmed-2017-0009

    Article  CAS  Google Scholar 

  17. Nguyen LS, Lepleux M, Makhlouf M et al (2016) Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism 7:1. https://doi.org/10.1186/s13229-015-0064-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ander BP, Barger N, Stamova B et al (2015) Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism 6:37. https://doi.org/10.1186/s13229-015-0029-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Danesi C, Keinänen K, Castrén ML (2019) Dysregulated Ca2+-permeable AMPA receptor signaling in neural progenitors modeling fragile X syndrome. Front Synaptic Neurosci 11:2

    Article  CAS  Google Scholar 

  20. Vachev T, Minkov I, Stoyanova V, Popov N (2013) Down regulation of miRNA let-7b-3p and let-7d-3p in the peripheral blood of children with autism spectrum disorder. Int J Curr Microbiol Appl Sci 2:384–388

    Google Scholar 

  21. Srivastav S, Walitza S, Grünblatt E (2018) Emerging role of miRNA in attention deficit hyperactivity disorder: a systematic review. ADHD Atten Deficit Hyperact Disord 10:49–63. https://doi.org/10.1007/s12402-017-0232-y

    Article  Google Scholar 

  22. Wu L, Zhao Q, Zhu X et al (2010) A novel function of microRNA Let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol 20:1042–1054. https://doi.org/10.1111/j.1750-3639.2010.00410.x

    Article  CAS  PubMed  Google Scholar 

  23. Wu LH, Peng M, Yu M et al (2015) Circulating microRNA Let-7d in attention-deficit/hyperactivity disorder. Neuromol Med 17:137–146. https://doi.org/10.1007/s12017-015-8345-y

    Article  CAS  Google Scholar 

  24. Sánchez-Mora C, Garcia-MartÃnez I, Pagerols M et al (2019) Correlation analysis of miRNA and mRNA expression profiles in peripheral blood mononuclear cells from ADHD patients and controls. Eur Neuropsychopharmacol 29:S887. https://doi.org/10.1016/j.euroneuro.2017.08.191

    Article  Google Scholar 

  25. Zadehbagheri F, Hosseini E, Bagheri-Hosseinabadi Z et al (2019) Profiling of miRNAs in serum of children with attention-deficit hyperactivity disorder shows significant alterations. J Psychiatr Res 109:185–192. https://doi.org/10.1016/j.jpsychires.2018.12.013

    Article  PubMed  Google Scholar 

  26. Nemeth N, Kovács-Nagy R, Székely A et al (2013) Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS ONE 8:e84207. https://doi.org/10.1371/journal.pone.0084207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sánchez-Mora C, Ramos-Quiroga JA, Garcia-Martínez I et al (2013) Evaluation of single nucleotide polymorphisms in the miR-183-96-182 cluster in adulthood attention-deficit and hyperactivity disorder (ADHD) and substance use disorders (SUDs). Eur Neuropsychopharmacol 23:1463–1473. https://doi.org/10.1016/j.euroneuro.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Martínez I, Sánchez-Mora C, Pagerols M et al (2016) Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Transl Psychiatry 6:e879. https://doi.org/10.1038/tp.2016.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun XY, Lu J, Zhang L et al (2015) Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J Clin Neurosci 22:570–574

    Article  CAS  Google Scholar 

  30. Lai CY, Lee SY, Scarr E et al (2016) Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry 6:e717

    Article  CAS  Google Scholar 

  31. Hansen T, Olsen L, Lindow M et al (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE 2:e873. https://doi.org/10.1371/journal.pone.0000873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mellios N, Huang HS, Baker SP et al (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014. https://doi.org/10.1016/j.biopsych.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  33. Mellios N, Galdzicka M, Ginns E et al (2012) Gender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophrenia. Schizophr Bull 38:433–443. https://doi.org/10.1093/schbul/sbq091

    Article  PubMed  Google Scholar 

  34. Smrt RD, Szulwach KE, Pfeiffer RL et al (2010) MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28:1060–1070. https://doi.org/10.1002/stem.431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beveridge NJ, Tooney PA, Carroll AP et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168. https://doi.org/10.1093/hmg/ddn005

    Article  CAS  PubMed  Google Scholar 

  36. Beveridge NJ, Gardiner E, Carroll AP et al (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15:1176. https://doi.org/10.1038/mp.2009.84

    Article  CAS  PubMed  Google Scholar 

  37. Kimoto S, Glausier JR, Fish KN et al (2016) Reciprocal alterations in regulator of g protein signaling 4 and micro RNA16 in Schizophrenia. Schizophr Bull 42:396–405

    Article  Google Scholar 

  38. Hu K, Zhang C, Long L et al (2011) Expression profile of microRNAs in rat hippocampus following lithium-pilocarpine-induced status epilepticus. Neurosci Lett 488:252–257. https://doi.org/10.1016/j.neulet.2010.11.040

    Article  CAS  PubMed  Google Scholar 

  39. Risbud RM, Lee C, Porter BE (2011) Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus. Brain Res 1424:53–59. https://doi.org/10.1016/j.brainres.2011.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng J, Omran A, Ashhab MU et al (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50:291–297. https://doi.org/10.1007/s12031-013-9953-3

    Article  CAS  PubMed  Google Scholar 

  41. Henshall DC, Hamer HM, Pasterkamp RJ et al (2016) MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol 15:1368–1376. https://doi.org/10.1016/S1474-4422(16)30246-0

    Article  CAS  PubMed  Google Scholar 

  42. Ozernov-Palchik O, Gaab N (2016) Tackling the “dyslexia paradox”: reading brain and behavior for early markers of developmental dyslexia. Wiley Interdiscip Rev Cogn Sci 7:156–176. https://doi.org/10.1002/wcs.1383

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carrion-Castillo A, Franke B, Fisher SE (2013) Molecular genetics of dyslexia: an overview. Dyslexia 19:214–240. https://doi.org/10.1002/dys.1464

    Article  PubMed  Google Scholar 

  44. Rudov A, Rocchi MBL, Accorsi A et al (2013) Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment. Epigenetics 8:1023–1029. https://doi.org/10.4161/epi.26026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poelmans G, Buitelaar JK, Pauls DL, Franke B (2011) A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 16:365

    Article  CAS  Google Scholar 

  46. Rizzo R, Ragusa M, Barbagallo C et al (2015) Circulating miRNAs profiles in tourette syndrome: molecular data and clinical implications. Mol Brain 8:44. https://doi.org/10.1186/s13041-015-0133-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karagiannidis I, Rizzo R, Tarnok Z et al (2012) Replication of association between a SLITRK1 haplotype and Tourette syndrome in a large sample of families. Mol Psychiatry 17:665. https://doi.org/10.1038/mp.2011.151

    Article  CAS  PubMed  Google Scholar 

  48. Abelson JF, Kwan KY, O’Roak BJ et al (2005) Medicine: sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 310:317–320. https://doi.org/10.1126/science.1116502

    Article  CAS  PubMed  Google Scholar 

  49. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161

    Article  CAS  Google Scholar 

  50. Greenberg D, Soreq H (2014) MicroRNA therapeutics in neurological disease. Curr Pharm Des 20:6022–6027

    Article  CAS  Google Scholar 

  51. Bielefeld P, Schouten M, Meijer GM et al (2019) Co-administration of anti microRNA-124 and -137 oligonucleotides prevents hippocampal neural stem cell loss upon non-convulsive seizures. Front Mol Neurosci 12:31

    Article  CAS  Google Scholar 

  52. Reschke CR, Silva LFA, Norwood BA et al (2017) Potent anti-seizure effects of locked nucleic acid antagomirs targeting miR-134 in multiple mouse and rat models of epilepsy. Mol Ther Nucleic Acids 6:45–56

    Article  CAS  Google Scholar 

  53. Cai Z, Li S, Li S et al (2016) Antagonist targeting microRNA-155 protects against lithium-pilocarpine-induced status epilepticus in C57BL/6 mice by activating brain-derived neurotrophic factor. Front Pharmacol 7:129

    Article  Google Scholar 

  54. Zheng H, Tang R, Yao Y et al (2016) MiR-219 protects against seizure in the kainic acid model of epilepsy. Mol Neurobiol 53:1–7

    Article  CAS  Google Scholar 

  55. Zhang H, Qu Y, Wang A (2018) Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway. Mol Med Rep 17:5356–5361

    CAS  PubMed  Google Scholar 

  56. Kos A, Olde Loohuis N, Meinhardt J et al (2016) MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons. Cell Mol Life Sci 73:3555–3567

    Article  CAS  Google Scholar 

  57. Uwatoko H, Hama Y, Iwata IT et al (2019) Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson’s disease. Mol Brain 12:49

    Article  Google Scholar 

  58. Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 9:46–56

    Article  CAS  Google Scholar 

  59. Karnati HK, Panigrahi MK, Gutti RK et al (2015) miRNAs: key players in neurodegenerative disorders and epilepsy. J Alzheimer’s Dis 48:563–580

    Article  CAS  Google Scholar 

  60. Zhang Y, Chen M, Qiu Z et al (2016) MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. Protein Cell 7:489–500

    Article  CAS  Google Scholar 

  61. Šerý O, Paclt I, Drtílková I et al (2015) A 40-bp VNTR polymorphism in the 3′-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav Brain Funct 11:21

    Article  Google Scholar 

  62. He K, Guo C, He L, Shi Y (2018) miRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 155:9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Reyes, P.R., Garza, B.S. et al. MicroRNAs and Child Neuropsychiatric Disorders: A Brief Review. Neurochem Res 45, 232–240 (2020). https://doi.org/10.1007/s11064-019-02917-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02917-y

Keywords

Navigation