Skip to main content

Advertisement

Log in

The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease with an autoimmune component. It was suggested that potassium channels, which are involved in crucial biological functions may have a role in different diseases, including MS and its animal model, experimental autoimmune encephalomyelitis (EAE). It was shown that voltage-gated potassium channels Kv1.5 are responsible for fine-tuning in the immune physiology and influence proliferation and differentiation in microglia and astrocytes. Here, we explored the cellular distribution of the Kv1.5 channel, together with its transcript and protein expression in the male rat spinal cord during different stages of EAE. Our results reveal a decrease of Kv1.5 transcript and protein level at the peak of disease, where massive infiltration of myeloid cells occurs, together with reactive astrogliosis and demyelination. Also, we revealed that the presence of this channel is not found in infiltrating macrophages/microglia during EAE. It is interesting to note that Kv1.5 channel is expressed only in resting microglia in the naïve animals. Predominant expression of Kv1.5 channel was found in the astrocytes in all experimental groups, while some vimentin+ cells, resembling macrophages, are devoid of Kv1.5 expression. Our results point to the possible link between Kv1.5 channel and the pathophysiological processes in EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bjelobaba I, Savic D, Lavrnja I (2017) Multiple sclerosis and neuroinflammation: the overview of current and prospective therapies. Curr Pharm Des 23(5):693–730

    CAS  PubMed  Google Scholar 

  2. Jukkola PI, Lovett-Racke AE, Zamvil SS, Gu C (2012) K+ channel alterations in the progression of experimental autoimmune encephalomyelitis. Neurobiol Dis 47(2):280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yost Spencer C (1999) Potassium channels: basic aspects, functional roles, and medical significance. Anesthesiology 90(4):1186–1203

    Google Scholar 

  4. Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T (2014) Potassium channels: structures, diseases, and modulators. Chem Biol Drug Des 83(1):1–26

    CAS  PubMed  Google Scholar 

  5. Judge SIV, Bever CT (2006) Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 111(1):224–259

    CAS  PubMed  Google Scholar 

  6. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    PubMed  Google Scholar 

  7. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    PubMed  PubMed Central  Google Scholar 

  8. Bellot-Saez A, Kekesi O, Morley JW, Buskila Y (2017) Astrocytic modulation of neuronal excitability through K(+) spatial buffering. Neurosci Biobehav Rev 77:87–97

    CAS  PubMed  Google Scholar 

  9. Seifert G, Henneberger C, Steinhauser C (2018) Diversity of astrocyte potassium channels: an update. Brain Res Bull 136:26–36

    CAS  PubMed  Google Scholar 

  10. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8(12):982–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schattling B, Eggert B, Friese MA (2014) Acquired channelopathies as contributors to development and progression of multiple sclerosis. Exp Neurol 262:28–36

    CAS  PubMed  Google Scholar 

  12. Gobel K, Wedell JH, Herrmann AM, Wachsmuth L, Pankratz S, Bittner S et al (2013) 4-Aminopyridine ameliorates mobility but not disease course in an animal model of multiple sclerosis. Exp Neurol 248:62–71

    PubMed  Google Scholar 

  13. Moriguchi K, Miyamoto K, Fukumoto Y, Kusunoki S (2018) 4-Aminopyridine ameliorates relapsing remitting experimental autoimmune encephalomyelitis in SJL/J mice. J Neuroimmunol 323:131–135

    CAS  PubMed  Google Scholar 

  14. Goodman AD, Brown TR, Krupp LB, Schapiro RT, Schwid SR, Cohen R et al (2009) Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet (London, England) 373(9665):732–738

    CAS  Google Scholar 

  15. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW et al (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103(46):17414–17419

    CAS  PubMed  Google Scholar 

  16. Huang J, Han S, Sun Q, Zhao Y, Liu J, Yuan X et al (2017) Kv1.3 channel blocker (ImKTx88) maintains blood-brain barrier in experimental autoimmune encephalomyelitis. Cell Biosci 7:31

    PubMed  PubMed Central  Google Scholar 

  17. Bozic I, Tesovic K, Laketa D, Adzic M, Jakovljevic M, Bjelobaba I et al (2018) Voltage gated potassium channel Kv1.3 is upregulated on activated astrocytes in experimental autoimmune encephalomyelitis. Neurochem Res 43(5):1020–1034

    CAS  PubMed  Google Scholar 

  18. Fordyce CB, Jagasia R, Zhu X, Schlichter LC (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 25(31):7139–7149

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarras A, Marruecos L, Gomez D et al (2013) The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol 4:283

    PubMed  PubMed Central  Google Scholar 

  20. Vicente R, Escalada A, Coma M, Fuster G, Sanchez-Tillo E, Lopez-Iglesias C et al (2003) Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem 278(47):46307–46320

    CAS  PubMed  Google Scholar 

  21. Villalonga N, David M, Bielanska J, Vicente R, Comes N, Valenzuela C et al (2010) Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. J Gen Physiol 135(2):135–147

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roberds SL, Tamkun MM (1991) Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci USA 88(5):1798–1802

    CAS  PubMed  Google Scholar 

  23. Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS et al (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53(3):597–607

    CAS  PubMed  Google Scholar 

  24. Davies AR, Kozlowski RZ (2001) Kv channel subunit expression in rat pulmonary arteries. Lung 179(3):147–161

    CAS  PubMed  Google Scholar 

  25. Bielanska J, Hernandez-Losa J, Moline T, Somoza R, Ramon y Cajal S, Condom E et al (2012) Differential expression of Kv1.3 and Kv1.5 voltage-dependent K+ channels in human skeletal muscle sarcomas. Cancer Investig 30(3):203–208

    CAS  Google Scholar 

  26. Swanson R, Marshall J, Smith JS, Williams JB, Boyle MB, Folander K et al (1990) Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron 4(6):929–939

    CAS  PubMed  Google Scholar 

  27. Bielanska J, Hernandez-Losa J, Moline T, Somoza R, Ramon YCS, Condom E et al (2010) Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human fetus. Cell Physiol Biochem 26(2):219–226

    CAS  PubMed  Google Scholar 

  28. Villalonga N, David M, Bielanska J, Gonzalez T, Parra D, Soler C et al (2010) Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem Pharmacol 80(6):858–866

    CAS  PubMed  Google Scholar 

  29. Tyan L, Sopjani M, Dermaku-Sopjani M, Schmid E, Yang W, Xuan NT et al (2010) Inhibition of voltage-gated K+ channels in dendritic cells by rapamycin. Am J Physiol Cell Physiol 299(6):C1379–C1385

    CAS  PubMed  Google Scholar 

  30. Vicente R, Escalada A, Villalonga N, Texido L, Roura-Ferrer M, Martin-Satue M et al (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 281(49):37675–37685

    CAS  PubMed  Google Scholar 

  31. Villalonga N, Escalada A, Vicente R, Sanchez-Tillo E, Celada A, Solsona C et al (2007) Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun 352(4):913–918

    CAS  PubMed  Google Scholar 

  32. Felipe A, Soler C, Comes N (2010) Kv1.5 in the immune system: the good, the bad, or the ugly? Front Physiol 1:152

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sobko A, Peretz A, Attali B (1998) Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J 17(16):4723–4734

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sobko A, Peretz A, Shirihai O, Etkin S, Cherepanova V, Dagan D et al (1998) Heteromultimeric delayed-rectifier K+ channels in schwann cells: developmental expression and role in cell proliferation. J Neurosci 18(24):10398–10408

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallejo-Gracia A, Bielanska J, Hernandez-Losa J, Castellvi J, Ruiz-Marcellan MC, Ramon y Cajal S et al (2013) Emerging role for the voltage-dependent K+ channel Kv1.5 in B-lymphocyte physiology: expression associated with human lymphoma malignancy. J Leukocyte Biol 94(4):779–789

    CAS  PubMed  Google Scholar 

  36. Pannasch U, Farber K, Nolte C, Blonski M, Yan Chiu S, Messing A et al (2006) The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Mol Cell Neurosci 33(4):401–411

    CAS  PubMed  Google Scholar 

  37. MacFarlane SN, Sontheimer H (2000) Modulation of Kv1.5 currents by Src tyrosine phosphorylation: potential role in the differentiation of astrocytes. J Neurosci 20(14):5245–5253

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy ML, Saal D, Perney T, Sontheimer H, Waxman SG, Kaczmarek LK (1996) Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 18(3):177–184

    CAS  PubMed  Google Scholar 

  39. Arnold R, Huynh W, Kiernan MC, Krishnan AV (2015) Ion channel modulation as a therapeutic approach in multiple sclerosis. Curr Med Chem 22(38):4366–4378

    CAS  PubMed  Google Scholar 

  40. Kohler I, Meier R, Busato A, Neiger-Aeschbacher G (1999) Is carbon dioxide (CO2) a useful short acting anaesthetic for small laboratory animals? Lab Anim 33(2):155–161

    CAS  PubMed  Google Scholar 

  41. Jakovljevic M, Lavrnja I, Bozic I, Milosevic A, Bjelobaba I, Savic D et al (2019) Induction of NTPDase1/CD39 by reactive microglia and macrophages is associated with the functional state during EAE. Front Neurosci 13:410

    PubMed  PubMed Central  Google Scholar 

  42. Trifunovic D, Djedovic N, Lavrnja I, Wendrich KS, Paquet-Durand F, Miljkovic D (2015) Cell death of spinal cord ED1(+) cells in a rat model of multiple sclerosis. PeerJ 3:e1189

    PubMed  PubMed Central  Google Scholar 

  43. Kotecha SA, Schlichter LC (1999) A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19(24):10680–10693

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lampert A, Muller MM, Berchtold S, Lang KS, Palmada M, Dobrovinskaya O et al (2003) Effect of dexamethasone on voltage-gated K+ channels in Jurkat T-lymphocytes. Pflugers Archiv 447(2):168–174

    CAS  PubMed  Google Scholar 

  45. Lavrnja I, Savic D, Bjelobaba I, Dacic S, Bozic I, Parabucki A et al (2012) The effect of ribavirin on reactive astrogliosis in experimental autoimmune encephalomyelitis. J Pharmacol Sci 119(3):221–232

    CAS  PubMed  Google Scholar 

  46. Lavrnja I, Stojkov D, Bjelobaba I, Pekovic S, Dacic S, Nedeljkovic N et al (2008) Ribavirin ameliorates experimental autoimmune encephalomyelitis in rats and modulates cytokine production. Int Immunopharmacol 8(9):1282–1290

    CAS  PubMed  Google Scholar 

  47. Khanna R, Roy L, Zhu X, Schlichter LC (2001) K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol 280(4):C796–C806

    CAS  PubMed  Google Scholar 

  48. Stebbing MJ, Cottee JM, Rana I (2015) The role of ion channels in microglial activation and proliferation—a complex interplay between ligand-gated ion channels, K(+) channels, and intracellular Ca(2). Front Immunol 6:497

    PubMed  PubMed Central  Google Scholar 

  49. Preussat K, Beetz C, Schrey M, Kraft R, Wolfl S, Kalff R et al (2003) Expression of voltage-gated potassium channels Kv1.3 and Kv1.5 in human gliomas. Neurosci Lett 346(1–2):33–36

    CAS  PubMed  Google Scholar 

  50. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Correale J, Farez MF (2015) The role of astrocytes in multiple sclerosis progression. Front Neurol 6:180

    PubMed  PubMed Central  Google Scholar 

  52. Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5(1):59–63

    CAS  PubMed  Google Scholar 

  53. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4):428–437

    CAS  PubMed  Google Scholar 

  54. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345

    CAS  PubMed  Google Scholar 

  55. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620

    CAS  PubMed  Google Scholar 

  56. Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16(5):249–263

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ponath G, Park C, Pitt D (2018) The role of astrocytes in multiple sclerosis. Front Immunol 9:217

    PubMed  PubMed Central  Google Scholar 

  58. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    PubMed  Google Scholar 

  59. Liu B, Teschemacher AG, Kasparov S (2017) Neuroprotective potential of astroglia. J Neurosci Res 95(11):2126–2139

    CAS  PubMed  Google Scholar 

Download references

Funding

The funding was provided by Ministry of Education, Science and Technological Development of the Republic of Serbia No. III41014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lavrnja.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozic, I., Savic, D., Milosevic, A. et al. The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis. Neurochem Res 44, 2733–2745 (2019). https://doi.org/10.1007/s11064-019-02892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02892-4

Keywords

Navigation