Skip to main content

Advertisement

Log in

Paradoxical Sleep Deprivation Aggravates and Prolongs Incision-Induced Pain Hypersensitivity via BDNF Signaling-Mediated Descending Facilitation in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanisms underlying the pronociceptive effect of paradoxical sleep deprivation (PSD) are not fully established. The modulation of BDNF signaling-mediated descending facilitation from the rostral ventromedial medulla (RVM) of brain stem has been demonstrated in persistent pain models of inflammatory pain, but not in incisional pain model. Recent study has shown that PSD increases the expression of brain-derived neurotrophic factor (BDNF) in the brainstem structure. Therefore, in the current study, we asked whether the BDNF signaling-mediated descending facilitation was involved in the PSD-induced pronociceptive effect on incisional pain and delay the recovery period of postoperative pain in rats. Our results found that a preoperative 24 h PSD significantly aggravated the pain hypersensitivity after incision and prolonged the duration of postoperative pain. The lesions of ipsilateral dorsolateral funiculus partly reversed the PSD-induced pronociceptive effect on incisional pain. Interestingly, the 24 h PSD, but not incision significantly enhanced the levels of BDNF protein expression in the RVM areas of rats. Furthermore, at 1 day or 4 days after incision, intra-RVM microinjection of a BDNF antibody partly reversed the PSD-induced pronociceptive effects in incisional rats, while it did not change the cumulative pain scores and paw withdrawal thresholds in rats receiving only plantar incision. These findings suggest that the preoperative PSD may aggravate and prolong the incision-induced pain hypersensitivity via BDNF signaling-mediated descending facilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ross A, Young J, Hedin R, Aran G, Demand A, Stafford A, Worley J, Moore M, Vassar M (2018) A systematic review of outcomes in postoperative pain studies in paediatric and adolescent patients: towards development of a core outcome set. Anaesthesia 73:375–383

    Article  CAS  Google Scholar 

  2. Berube M, Choiniere M, Laflamme YG, Gelinas C (2016) Acute to chronic pain transition in extremity trauma: a narrative review for future preventive interventions (part 1). Int J Orthop Trauma Nurs 23:47–59

    Article  Google Scholar 

  3. Hruschak V, Cochran G (2018) Psychosocial predictors in the transition from acute to chronic pain: a systematic review. Psychol Health Med. https://doi.org/10.1080/13548506.2018.1446097

    Article  PubMed  Google Scholar 

  4. Page MG, Katz J, Curtis K, Lutzky-Cohen N, Escobar EM, Clarke HA (2016) Acute pain trajectories and the persistence of post-surgical pain: a longitudinal study after total hip arthroplasty. J Anesth 30:568–577

    Article  Google Scholar 

  5. Dolan R, Huh J, Tiwari N, Sproat T, Camilleri-Brennan J (2016) A prospective analysis of sleep deprivation and disturbance in surgical patients. Ann Med Surg 6:1–5

    Article  Google Scholar 

  6. Lane T, East LA (2008) Sleep disruption experienced by surgical patients in an acute hospital. Br J Nurs 17:766–771

    Article  Google Scholar 

  7. Karmann AJ, Kundermann B, Lautenbacher S (2014) Sleep deprivation and pain: a review of the newest literature. Schmerz 28:141–146

    Article  CAS  Google Scholar 

  8. Wang PK, Cao J, Wang H, Liang L, Zhang J, Lutz BM, Shieh KR, Bekker A, Tao YX (2015) Short-term sleep disturbance-induced stress does not affect basal pain perception, but does delay postsurgical pain recovery. J Pain 16:1186–1199

    Article  Google Scholar 

  9. Mills EP, Di PF, Alshelh Z, Peck CC, Murray GM, Vickers ER, Henderson LA (2018) Brainstem pain-control circuitry connectivity in chronic neuropathic pain. J Neurosci 38:465–473

    Article  CAS  Google Scholar 

  10. Salas R, Ramirez K, Tortorici V, Vanegas H, Vazquez E (2018) Functional relationship between brainstem putative pain-facilitating neurons and spinal nociceptfive neurons during development of inflammation in rats. Brain Res 1686:55–64

    Article  CAS  Google Scholar 

  11. Wan J, Ding Y, Tahir AH, Shah MK, Janyaro H, Li X, Zhong J, Vodyanoy V, Ding M (2017) Electroacupuncture attenuates visceral hypersensitivity by inhibiting jak2/stat3 signaling pathway in the descending pain modulation system. Front Neurosci 11:644

    Article  Google Scholar 

  12. Pogatzki EM, Urban MO, Brennan TJ, Gebhart GF (2002) Role of the rostral medial medulla in the development of primary and secondary hyperalgesia after incision in the rat. Anesthesiology 96:1153–1160

    Article  Google Scholar 

  13. Tomim DH, Pontarolla FM, Bertolini JF, Arase M, Tobaldini G, Lima MMS, Fischer L (2016) The pronociceptive effect of paradoxical sleep deprivation in rats: evidence for a role of descending pain modulation mechanisms. Mol Neurobiol 53:1706–1717

    Article  CAS  Google Scholar 

  14. Chung EK, Bian ZX, Xu HX, Sung JJ (2009) Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17:213–221

    Article  CAS  Google Scholar 

  15. Orzel-Gryglewska J (2010) Consequences of sleep deprivation. Int J Occup Med Environ Health 23:95–114

    Article  Google Scholar 

  16. Okifuji A, Hare BD (2011) Do sleep disorders contribute to pain sensitivity? Curr Rheumatol Rep 13:528–534

    Article  Google Scholar 

  17. Ohayon MM (2009) Pain sensitivity, depression, and sleep deprivation: links with serotoninergic dysfunction. J Psychiatr Res 43:1243–1245

    Article  Google Scholar 

  18. Guo W, Robbins MT, Wei F, Zou S, Dubner R, Ren K (2006) Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 26:126–137

    Article  CAS  Google Scholar 

  19. Barnes AK, Koul-Tiwari R, Garner JM, Geist PA, Datta S (2017) Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: a novel mechanism for the homeostatic regulation of rapid eye movement sleep. J Neurochem 141:111–123

    Article  CAS  Google Scholar 

  20. Datta S, Knapp CM, Koul-Tiwari R, Barnes A (2015) The homeostatic regulation of REM sleep: a role for localized expression of brain-derived neurotrophic factor in the brainstem. Behav. Brain Res 292:381–392

    CAS  Google Scholar 

  21. Garner JM, Chambers J, Barnes AK, Datta S (2017) Changes in brain-derived neurotrophic factor expression influence sleep-wake activity and homeostatic regulation of rapid eye movement sleep. Sleep 41:zsx194

    PubMed Central  Google Scholar 

  22. Xie F, Li X, Bao M, Shi R, Yue Y, Guan Y, Wang Y (2015) Anesthetic propofol normalized the increased release of glutamate and gamma-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol Res 37:1102–1107

    Article  CAS  Google Scholar 

  23. Wang Y, Mu X, Wu J, Wu A, Fang L, Li J, Yue Y (2011) Differential roles of phosphorylated AMPA receptor GluR1 subunits at serine-831 and serine-845 sites in spinal cord dorsal horn in a rat model of post-operative pain. Neurochem Res 36:170–176

    Article  Google Scholar 

  24. Wang Y, Wu J, Guo R, Zhao Y, Wang Y, Zhang M, Chen Z, Wu A, Yue Y (2013) Surgical incision induces phosphorylation of AMPA receptor GluR1 subunits at serine-831 sites and GluR1 trafficking in spinal cord dorsal horn via a protein kinase Cgamma-dependent mechanism. Neuroscience 240:361–370

    Article  CAS  Google Scholar 

  25. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  Google Scholar 

  26. Chao YC, Xie F, Li X, Guo R, Yang N, Zhang C, Shi R, Guan Y, Yue Y, Wang Y (2016) Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochem Int 97:91–98

    Article  CAS  Google Scholar 

  27. Chen Z, Xie F, Bao M, Li X, Chao Y, Lin C, Guo R, Zhang C, Wu A, Yue Y, Guan Y, Wang Y (2015) Activation of p38 MAPK in the rostral ventromedial medulla by visceral noxious inputs transmitted via the dorsal columns may contribute to pelvic organ cross-sensitization in rats with endometriosis. Neuroscience 291:272–278

    Article  CAS  Google Scholar 

  28. Kang Y, Zhao Y, Guo R, Zhang M, Wang Y, Mu Y, Wu A, Yue Y, Wu J, Wang Y (2013) Activation of ERK signaling in rostral ventromedial medulla is dependent on afferent input from dorsal column pathway and contributes to acetic acid-induced visceral nociception. Neurochem Int 63:389–396

    Article  CAS  Google Scholar 

  29. Lautenbacher S, Kundermann B, Krieg JC (2006) Sleep deprivation and pain perception. Sleep Med Rev 10:357–369

    Article  Google Scholar 

  30. Pieh C, Popp R, Geisler P, Hajak G (2011) Sleep and pain: a bi-directional relation? Psychiatr Prax 38:166–170

    Article  Google Scholar 

  31. Alexandre C, Latremoliere A, Ferreira A, Miracca G, Yamamoto M, Scammell TE, Woolf CJ (2017) Decreased alertness due to sleep loss increases pain sensitivity in mice. Nat Med 23:768–774

    Article  CAS  Google Scholar 

  32. Schrimpf M, Liegl G, Boeckle M, Leitner A, Geisler P, Pieh C (2015) The effect of sleep deprivation on pain perception in healthy subjects: a meta-analysis. Sleep Med 16:1313–1320

    Article  Google Scholar 

  33. Finan PH, Goodin BR, Smith MT (2013) The association of sleep and pain: an update and a path forward. J Pain 14:1539–1552

    Article  Google Scholar 

  34. Walker SM, Fitzgerald M, Hathway GJ (2015) Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla. Anesthesiology 122:1391–1400

    Article  Google Scholar 

  35. Araujo P, Coelho CA, Oliveira MG, Tufik S, Andersen ML (2018) Neonatal sleep restriction increases nociceptive sensitivity in adolescent mice. Pain Physician 21:E137–E148

    PubMed  Google Scholar 

  36. Choy EH (2015) The role of sleep in pain and fibromyalgia. Nat Rev Rheumatol 11:513–520

    Article  Google Scholar 

  37. Odegard SS, Omland PM, Nilsen KB, Stjern M, Gravdahl GB, Sand T (2015) The effect of sleep restriction on laser evoked potentials, thermal sensory and pain thresholds and suprathreshold pain in healthy subjects. Clin Neurophysiol 126:1979–1987

    Article  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Foundation of China (Grant No. 81771181 and 81571065) and Natural Science Foundation of Beijing Municipality (Grant No. 7152056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kehu Yang or Yun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Li, H., Xu, Z. et al. Paradoxical Sleep Deprivation Aggravates and Prolongs Incision-Induced Pain Hypersensitivity via BDNF Signaling-Mediated Descending Facilitation in Rats. Neurochem Res 43, 2353–2361 (2018). https://doi.org/10.1007/s11064-018-2660-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2660-2

Keywords

Navigation