Skip to main content

Advertisement

Log in

The Pronociceptive Effect of Paradoxical Sleep Deprivation in Rats: Evidence for a Role of Descending Pain Modulation Mechanisms

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mechanisms underlying the pronociceptive effect of paradoxical sleep deprivation (PSD) are not known. In this study, we asked whether PSD increases tonic nociception in the formalin test, decreases the antinociceptive effect of morphine administered into the periaqueductal gray matter (PAG), and disrupts endogenous descending pain modulation. PSD for either 24 or 48 h significantly increased formalin-induced nociception and decreased mechanical nociceptive paw withdrawal threshold. The maximal antinociceptive effect induced by morphine (0.9–9 nmol, intra-PAG) was significantly decreased by PSD. The administration of a low dose of the GABAA receptor antagonist, bicuculline (30–300 pmol, intra-PAG), decreased nociception in control rats, but not in paradoxical-sleep-deprived ones. Furthermore, the administration of the cholecystokinin (CCK) 2 receptor antagonist, YM022 (0.5–2 pmol) in the rostral ventral medulla (RVM), decreased nociception in paradoxical-sleep-deprived rats but not in control ones. While a dose of the CCK 2 receptor agonist, CCK-8 (8–24 pmol intra-RVM), increased nociception in control rats, but not in paradoxical-sleep-deprived ones. In addition, the injection of lidocaine (QX-314, 2 %, intra-RVM) decreased nociception in sleep-deprived rats, but not in control rats, while the lesion of the dorsolateral funiculus prevented the pronociceptive effect of PSD. Finally, PSD significantly increased c-Fos expression in the RVM. Therefore, PSD increases pain independently of its duration or of the characteristic of the nociceptive stimulus and decreases morphine analgesia at the PAG. PSD appears to increase pain by decreasing descending pain inhibitory activity and by increasing descending pain facilitatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Finan PH, Goodin BR, Smith MT (2013) The association of sleep and pain: an update and a path forward. J Pain 14(12):1539–1552. doi:10.1016/j.jpain.2013.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morin CM, Gibson D, Wade J (1998) Self-reported sleep and mood disturbance in chronic pain patients. Clin J Pain 14(4):311–314

    Article  CAS  PubMed  Google Scholar 

  3. Smith MT, Perlis ML, Smith MS, Giles DE, Carmody TP (2000) Sleep quality and presleep arousal in chronic pain. J Behav Med 23(1):1–13

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson B, Verma S (2004) Comorbidities in chronic neuropathic pain. Pain Med 5(Suppl 1):S9–S27

    Article  PubMed  Google Scholar 

  5. Tang NK, McBeth J, Jordan KP, Blagojevic-Bucknall M, Croft P, Wilkie R (2014) Impact of musculoskeletal pain on insomnia onset: a prospective cohort study. Rheumatology (Oxford). doi:10.1093/rheumatology/keu283

    Google Scholar 

  6. Morin CM, LeBlanc M, Daley M, Gregoire JP, Merette C (2006) Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med 7(2):123–130. doi:10.1016/j.sleep.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  7. Smith MT, Haythornthwaite JA (2004) How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Med Rev 8(2):119–132. doi:10.1016/S1087-0792(03)00044

    Article  PubMed  Google Scholar 

  8. Edwards RR, Almeida DM, Klick B, Haythornthwaite JA, Smith MT (2008) Duration of sleep contributes to next-day pain report in the general population. Pain 137(1):202–207. doi:10.1016/j.pain.2008.01.025

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gupta A, Silman AJ, Ray D, Morriss R, Dickens C, MacFarlane GJ, Chiu YH, Nicholl B, McBeth J (2007) The role of psychosocial factors in predicting the onset of chronic widespread pain: results from a prospective population-based study. Rheumatology (Oxford) 46(4):666–671. doi:10.1093/rheumatology/kel363

    Article  CAS  Google Scholar 

  10. Haack M, Lee E, Cohen DA, Mullington JM (2009) Activation of the prostaglandin system in response to sleep loss in healthy humans: potential mediator of increased spontaneous pain. Pain 145(1–2):136–141. doi:10.1016/j.pain.2009.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lusa S, Miranda H, Luukkonen R, Punakallio A (2014) Sleep disturbances predict long-term changes in low back pain among Finnish firefighters: 13-year follow-up study. Int Arch Occup Environ Health. doi:10.1007/s00420-014-0968-z

    PubMed  PubMed Central  Google Scholar 

  12. Aili K, Nyman T, Svartengren M, Hillert L (2014) Sleep as a predictive factor for the onset and resolution of multi-site pain: a 5-year prospective study. Eur J Pain. doi:10.1002/ejp.552

    PubMed Central  Google Scholar 

  13. Taylor DJ, Mallory LJ, Lichstein KL, Durrence HH, Riedel BW, Bush AJ (2007) Comorbidity of chronic insomnia with medical problems. Sleep 30(2):213–218

    Article  PubMed  Google Scholar 

  14. Tufik S, Andersen ML, Bittencourt LR, Mello MT (2009) Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research. An Acad Bras Cienc 81(3):521–538

    Article  PubMed  Google Scholar 

  15. Damasceno F, Skinner GO, Araujo PC, Ferraz MM, Tenorio F, de Almeida OM (2013) Nitric oxide modulates the hyperalgesic response to mechanical noxious stimuli in sleep-deprived rats. BMC Neurosci 14(1):92. doi:10.1186/1471-2202-14-92

    Article  PubMed  PubMed Central  Google Scholar 

  16. Damasceno F, Skinner GO, Gomes A, Araujo PC, de Almeida OM (2009) Systemic amitriptyline administration does not prevent the increased thermal response induced by paradoxical sleep deprivation. Pharmacol Biochem Behav 94(1):51–55. doi:10.1016/j.pbb.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Onen SH, Alloui A, Eschalier A, Dubray C (2000) Vocalization thresholds related to noxious paw pressure are decreased by paradoxical sleep deprivation and increased after sleep recovery in rat. Neurosci Lett 291(1):25–28

    Article  CAS  PubMed  Google Scholar 

  18. Wei H, Hao B, Huang JL, Ma AN, Li XY, Wang YX, Pertovaara A (2010) Intrathecal administration of a gap junction decoupler, an inhibitor of Na(+)-K(+)-2Cl(−) cotransporter 1, or a GABA(A) receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacol Biochem Behav 97(2):377–383. doi:10.1016/j.pbb.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  19. Wei H, Ma A, Wang YX, Pertovaara A (2008) Role of spinal 5-HT receptors in cutaneous hypersensitivity induced by REM sleep deprivation. Pharmacol Res 57(6):469–475. doi:10.1016/j.phrs.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  20. Wei H, Zhao W, Wang YX, Pertovaara A (2007) Pain-related behavior following REM sleep deprivation in the rat: influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide. Brain Res 1148:105–112. doi:10.1016/j.brainres.2007.02.040

    Article  CAS  PubMed  Google Scholar 

  21. Nascimento DC, Andersen ML, Hipolide DC, Nobrega JN, Tufik S (2007) Pain hypersensitivity induced by paradoxical sleep deprivation is not due to altered binding to brain mu-opioid receptors. Behav Brain Res 178(2):216–220. doi:10.1016/j.bbr.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  22. Skinner GO, Damasceno F, Gomes A, de Almeida OM (2011) Increased pain perception and attenuated opioid antinociception in paradoxical sleep-deprived rats are associated with reduced tyrosine hydroxylase staining in the periaqueductal gray matter and are reversed by L-dopa. Pharmacol Biochem Behav 99(1):94–99. doi:10.1016/j.pbb.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  23. Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5(7):565–575. doi:10.1038/nrn1431

    Article  CAS  PubMed  Google Scholar 

  24. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  PubMed  Google Scholar 

  25. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  PubMed  Google Scholar 

  26. Morgan MM, Bobeck EN, Ingram SL (2009) Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat. Brain Res 1295:59–66. doi:10.1016/j.brainres.2009.07.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan MM, Clayton CC (2005) Defensive behaviors evoked from the ventrolateral periaqueductal gray of the rat: comparison of opioid and GABA disinhibition. Behav Brain Res 164(1):61–66. doi:10.1016/j.bbr.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  28. Xie JY, Herman DS, Stiller CO, Gardell LR, Ossipov MH, Lai J, Porreca F, Vanderah TW (2005) Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 25(2):409–416. doi:10.1523/JNEUROSCI. 4054-04.2005

    Article  PubMed  Google Scholar 

  29. Vera-Portocarrero LP, Ossipov MH, Lai J, King T, Porreca F (2011) Descending facilitatory pathways from the rostroventromedial medulla mediate naloxone-precipitated withdrawal in morphine-dependent rats. J Pain 12(6):667–676. doi:10.1016/j.jpain.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saade NE, Al Amin H, Tchachaghian S, Jabbur SJ, Atweh SF (2010) Alteration of GABAergic and glycinergic mechanisms by lidocaine injection in the rostral ventromedial medulla of neuropathic rats. Pain 149(1):89–99. doi:10.1016/j.pain.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  31. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, New York

    Google Scholar 

  32. Gear RW, Levine JD (1995) Antinociception produced by an ascending spino-supraspinal pathway. J Neurosci 15(4):3154–3161

    CAS  PubMed  Google Scholar 

  33. Dias QM, Silveira JW, Reis GM, Costa KA, Rossaneis AC, Fais RS, Prado WA (2012) The effect of intrathecal gabapentin on neuropathic pain is independent of the integrity of the dorsolateral funiculus in rats. Life Sci 91(17–18):837–842. doi:10.1016/j.lfs.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  34. Lima MM, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, Vital MA, Tufik S (2008) Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res 188(2):406–411. doi:10.1016/j.bbr.2007.11.025

    Article  CAS  PubMed  Google Scholar 

  35. Machado RB, Suchecki D, Tufik S (2005) Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol. Behav Brain Res 160(2):356–364. doi:10.1016/j.bbr.2005.01.001

    Article  PubMed  Google Scholar 

  36. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111(4):409–419

    CAS  PubMed  Google Scholar 

  37. Tobaldini G, Aisengart B, Lima MM, Tambeli CH, Fischer L (2014) Ascending nociceptive control contributes to the antinociceptive effect of acupuncture in a rat model of acute pain. J Pain 15(4):422–434. doi:10.1016/j.jpain.2013.12.008

    Article  PubMed  Google Scholar 

  38. Anne K, Nitter AHP, Forseth K (2012) Are sleep problems and non-specific health complaints risk factors for chronic pain? A prospective population-based study with 17 year follow-up. Scand J Pain 3(4):210–217

    Article  Google Scholar 

  39. Bigatti SM, Hernandez AM, Cronan TA, Rand KL (2008) Sleep disturbances in fibromyalgia syndrome: relationship to pain and depression. Arthritis Rheum 59(7):961–967. doi:10.1002/art.23828

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rasmussen-Barr E, Grooten WJ, Hallqvist J, Holm LW, Skillgate E (2014) Are job strain and sleep disturbances prognostic factors for neck/shoulder/arm pain? A cohort study of a general population of working age in Sweden. BMJ Open 4(7):e005103. doi:10.1136/bmjopen-2014-005103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Onen SH, Alloui A, Gross A, Eschallier A, Dubray C (2001) The effects of total sleep deprivation, selective sleep interruption and sleep recovery on pain tolerance thresholds in healthy subjects. J Sleep Res 10(1):35–42

    Article  CAS  PubMed  Google Scholar 

  42. Smith MT, Edwards RR, McCann UD, Haythornthwaite JA (2007) The effects of sleep deprivation on pain inhibition and spontaneous pain in women. Sleep 30(4):494–505

    Article  PubMed  Google Scholar 

  43. Lentz MJ, Landis CA, Rothermel J, Shaver JL (1999) Effects of selective slow wave sleep disruption on musculoskeletal pain and fatigue in middle aged women. J Rheumatol 26(7):1586–1592

    CAS  PubMed  Google Scholar 

  44. Kundermann B, Spernal J, Huber MT, Krieg JC, Lautenbacher S (2004) Sleep deprivation affects thermal pain thresholds but not somatosensory thresholds in healthy volunteers. Psychosom Med 66(6):932–937. doi:10.1097/01.psy.0000145912.24553.c0

    Article  PubMed  Google Scholar 

  45. Kundermann B, Hemmeter-Spernal J, Huber MT, Krieg JC, Lautenbacher S (2008) Effects of total sleep deprivation in major depression: overnight improvement of mood is accompanied by increased pain sensitivity and augmented pain complaints. Psychosom Med 70(1):92–101. doi:10.1097/PSY.0b013e31815c1b5d

    Article  PubMed  Google Scholar 

  46. Roehrs T, Hyde M, Blaisdell B, Greenwald M, Roth T (2006) Sleep loss and REM sleep loss are hyperalgesic. Sleep 29(2):145–151

    Article  PubMed  Google Scholar 

  47. Schuh-Hofer S, Wodarski R, Pfau DB, Caspani O, Magerl W, Kennedy JD, Treede RD (2013) One night of total sleep deprivation promotes a state of generalized hyperalgesia: a surrogate pain model to study the relationship of insomnia and pain. Pain 154(9):1613–1621. doi:10.1016/j.pain.2013.04.046

    Article  PubMed  Google Scholar 

  48. Andersen ML, Silva A, Kawakami R, Tufik S (2004) The effects of sleep deprivation and sleep recovery on pain thresholds of rats with chronic pain. Sleep Sci 2(2):82–87

    Google Scholar 

  49. Onen SH, Alloui A, Jourdan D, Eschalier A, Dubray C (2001) Effects of rapid eye movement (REM) sleep deprivation on pain sensitivity in the rat. Brain Res 900(2):261–267

    Article  Google Scholar 

  50. Hicks RA, Moore JD, Findley P, Hirshfield C, Humphrey V (1978) REM sleep deprivation and pain thresholds in rats. Percept Mot Skills 47(3 Pt 1):848–850

    Article  CAS  PubMed  Google Scholar 

  51. Steinmiller CL, Roehrs TA, Harris E, Hyde M, Greenwald MK, Roth T (2010) Differential effect of codeine on thermal nociceptive sensitivity in sleepy versus nonsleepy healthy subjects. Exp Clin Psychopharmacol 18(3):277–283. doi:10.1037/a0018899

    Article  CAS  PubMed  Google Scholar 

  52. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57(1):1–164

    Article  CAS  PubMed  Google Scholar 

  53. Hahm ET, Lee JJ, Min BI, Cho YW (2004) Opioid inhibition of GABAergic neurotransmission in mechanically isolated rat periaqueductal gray neurons. Neurosci Res 50(3):343–354. doi:10.1016/j.neures.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  54. Roychowdhury SM, Fields HL (1996) Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Neuroscience 74(3):863–872

    Article  CAS  PubMed  Google Scholar 

  55. Heinricher MM, Neubert MJ (2004) Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla. J Neurophysiol 92(4):1982–1989. doi:10.1152/jn.00411.2004

    Article  CAS  PubMed  Google Scholar 

  56. Marshall TM, Herman DS, Largent-Milnes TM, Badghisi H, Zuber K, Holt SC, Lai J, Porreca F, Vanderah TW (2011) Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E(2) in the spinal cord. Pain 153(1):86–94. doi:10.1016/j.pain.2011.09.021

    Article  PubMed  PubMed Central  Google Scholar 

  57. Proença MB, Dombrowski PA, Da Cunha C, Fischer L, Ferraz AC, Lima MM (2014) Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Neuropharmacology 76 Pt A:118–126. doi:10.1016/j.neuropharm.2013.08.024

    Article  PubMed  Google Scholar 

  58. Edwards RR, Grace E, Peterson S, Klick B, Haythornthwaite JA, Smith MT (2009) Sleep continuity and architecture: associations with pain-inhibitory processes in patients with temporomandibular joint disorder. Eur J Pain 13(10):1043–1047. doi:10.1016/j.ejpain.2008.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tiede W, Magerl W, Baumgartner U, Durrer B, Ehlert U, Treede RD (2010) Sleep restriction attenuates amplitudes and attentional modulation of pain-related evoked potentials, but augments pain ratings in healthy volunteers. Pain 148(1):36–42. doi:10.1016/j.pain.2009.08.029

    Article  PubMed  Google Scholar 

  60. Hamilton NA, Catley D, Karlson C (2007) Sleep and the affective response to stress and pain. Health Psychol 26(3):288–295. doi:10.1037/0278-6133.26.3.288

    Article  PubMed  Google Scholar 

  61. O’Brien EM, Waxenberg LB, Atchison JW, Gremillion HA, Staud RM, McCrae CS, Robinson ME (2011) Intraindividual variability in daily sleep and pain ratings among chronic pain patients: bidirectional association and the role of negative mood. Clin J Pain 27(5):425–433. doi:10.1097/AJP.0b013e318208c8e4

    Article  PubMed  Google Scholar 

  62. Paul-Savoie E, Marchand S, Morin M, Bourgault P, Brissette N, Rattanavong V, Cloutier C, Bissonnette A, Potvin S (2012) Is the deficit in pain inhibition in fibromyalgia influenced by sleep impairments? Open Rheumatol J 6:296–302. doi:10.2174/1874312901206010296

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mork PJ, Nilsen TI (2012) Sleep problems and risk of fibromyalgia: longitudinal data on an adult female population in Norway. Arthritis Rheum 64(1):281–284. doi:10.1002/art.33346

    Article  PubMed  Google Scholar 

  64. Quartana PJ, Wickwire EM, Klick B, Grace E, Smith MT (2010) Naturalistic changes in insomnia symptoms and pain in temporomandibular joint disorder: a cross-lagged panel analysis. Pain 149(2):325–331. doi:10.1016/j.pain.2010.02.029

    Article  PubMed  Google Scholar 

  65. Buenaver LF, Quartana PJ, Grace EG, Sarlani E, Simango M, Edwards RR, Haythornthwaite JA, Smith MT (2012) Evidence for indirect effects of pain catastrophizing on clinical pain among myofascial temporomandibular disorder participants: the mediating role of sleep disturbance. Pain 153(6):1159–1166. doi:10.1016/j.pain.2012.01.023

    Article  PubMed  Google Scholar 

  66. Boardman HF, Thomas E, Millson DS, Croft PR (2006) The natural history of headache: predictors of onset and recovery. Cephalalgia 26(9):1080–1088. doi:10.1111/j.1468-2982.2006.01166.x

    Article  CAS  PubMed  Google Scholar 

  67. Lyngberg AC, Rasmussen BK, Jorgensen T, Jensen R (2005) Has the prevalence of migraine and tension-type headache changed over a 12-year period? A Danish population survey. Eur J Epidemiol 20(3):243–249

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. D.H.T was a recipient of a Master of Science fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Brazil. G.T. is a recipient of a PhD fellowship from CAPES. M.M.S.L. is a recipient of a research fellowship from CNPq.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomim, D.H., Pontarolla, F.M., Bertolini, J.F. et al. The Pronociceptive Effect of Paradoxical Sleep Deprivation in Rats: Evidence for a Role of Descending Pain Modulation Mechanisms. Mol Neurobiol 53, 1706–1717 (2016). https://doi.org/10.1007/s12035-014-9059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9059-0

Keywords

Navigation