Skip to main content

Advertisement

Log in

Microglial Interferon Signaling and White Matter

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Microglia, the resident immune cells of the CNS, are primary regulators of the neuroimmune response to injury. Type I interferons (IFNs), including the IFNαs and IFNβ, are key cytokines in the innate immune system. Their activity is implicated in the regulation of microglial function both during development and in response to neuroinflammation, ischemia, and neurodegeneration. Data from numerous studies in multiple sclerosis (MS) and stroke suggest that type I IFNs can modulate the microglial phenotype, influence the overall neuroimmune milieu, regulate phagocytosis, and affect blood–brain barrier integrity. All of these IFN-induced effects result in numerous downstream consequences on white matter pathology and microglial reactivity. Dysregulation of IFN signaling in mouse models with genetic deficiency in ubiquitin specific protease 18 (USP18) leads to a severe neurological phenotype and neuropathological changes that include white matter microgliosis and pro-inflammatory gene expression in dystrophic microglia. A class of genetic disorders in humans, referred to as pseudo-TORCH syndrome (PTS) for the clinical resemblance to infection-induced TORCH syndrome, also show dysregulation of IFN signaling, which leads to severe neurological developmental disease. In these disorders, the excessive activation of IFN signaling during CNS development results in a destructive interferonopathy with similar induction of microglial dysfunction as seen in USP18 deficient mice. Other recent studies implicate “microgliopathies” more broadly in neurological disorders including Alzheimer’s disease (AD) and MS, suggesting that microglia are a potential therapeutic target for disease prevention and/or treatment, with interferon signaling playing a key role in regulating the microglial phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088. doi:10.1212/WNL.0b013e3182a4a577

    Article  PubMed  Google Scholar 

  2. Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS (2015) Roles of microglia in brain development, tissue maintenance and repair. Brain 138 (Pt 5):1138–1159. doi:10.1093/brain/awv066

    Article  PubMed  Google Scholar 

  3. Bilimoria PM, Stevens B (2015) Microglia function during brain development: new insights from animal models. Brain Res 1617:7–17. doi:10.1016/j.brainres.2014.11.032

    Article  CAS  PubMed  Google Scholar 

  4. Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33(10):4216–4233. doi:10.1523/JNEUROSCI.3441-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PloS ONE 8(2):e56293. doi:10.1371/journal.pone.0056293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi:10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  7. Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S (2006) Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 47(8):3595–3602. doi:10.1167/iovs.05-1522

    Article  PubMed  Google Scholar 

  8. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  9. Alliot F, Lecain E, Grima B, Pessac B (1991) Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci USA 88(4):1541–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401. doi:10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. doi:10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  13. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783. doi:10.1126/science.aag2590

    Article  CAS  PubMed  Google Scholar 

  14. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  15. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905. doi:10.1038/nn.3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi:10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  17. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  18. Gertig U, Hanisch UK (2014) Microglial diversity by responses and responders. Front Cell Neurosci 8:101. doi:10.3389/fncel.2014.00101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA (2006) Microglia recognize double-stranded RNA via TLR3. J Immunol 176(6):3804–3812

    Article  CAS  PubMed  Google Scholar 

  20. Costello DA, Lynch MA (2013) Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-beta. Hippocampus 23(8):696–707. doi:10.1002/hipo.22129

    Article  CAS  PubMed  Google Scholar 

  21. Hayakawa K, Qiu J, Lo EH (2010) Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci 1207:50–57. doi:10.1111/j.1749-6632.2010.05728.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stevens SL, Vartanian KB, Stenzel-Poore MP (2014) Reprogramming the response to stroke by preconditioning. Stroke 45(8):2527–2531. doi:10.1161/STROKEAHA.114.002879

    Article  PubMed  PubMed Central  Google Scholar 

  23. Crotti A, Ransohoff RM (2016) Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44(3):505–515. doi:10.1016/j.immuni.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Moller T, Orre M, Kamphuis W, Hol EM, Boddeke EW, Eggen BJ (2015) Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 3:31. doi:10.1186/s40478-015-0203-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Raj DD, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM, de Waard MC, van der Pluijm I, Brandt R, Kreft KL, Laman JD, de Haan G, Biber KP, Hoeijmakers JH, Eggen BJ, Boddeke HW (2014) Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 35(9):2147–2160. doi:10.1016/j.neurobiolaging.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  26. Stark GR (2007) How cells respond to interferons revisited: from early history to current complexity. Cytokine Growth Factor Rev 18 (5–6):419–423. doi:10.1016/j.cytogfr.2007.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264. doi:10.1146/annurev.biochem.67.1.227

    Article  CAS  PubMed  Google Scholar 

  28. Borden EC, Williams BR (2011) Interferon-stimulated genes and their protein products: what and how? J Interferon Cytokine Res 31(1):1–4. doi:10.1089/jir.2010.0129

    Article  CAS  PubMed  Google Scholar 

  29. Brendecke SM, Prinz M (2012) How type I interferons shape myeloid cell function in CNS autoimmunity. J Leukoc Biol 92(3):479–488. doi:10.1189/jlb.0112043

    Article  CAS  PubMed  Google Scholar 

  30. Owens T, Khorooshi R, Wlodarczyk A, Asgari N (2014) Interferons in the central nervous system: a few instruments play many tunes. Glia 62(3):339–355

    Article  PubMed  Google Scholar 

  31. Khorooshi R, Owens T (2010) Injury-induced type I IFN signaling regulates inflammatory responses in the central nervous system. J Immunol 185(2):1258–1264. doi:10.4049/jimmunol.0901753

    Article  CAS  PubMed  Google Scholar 

  32. Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28(5):675–686. doi:10.1016/j.immuni.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  33. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29(31):9839–9849. doi:10.1523/JNEUROSCI.2496-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312. doi:10.1038/nrn3722

    Article  CAS  PubMed  Google Scholar 

  35. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, Alzheimer’s Disease Neuroimaging Initiative, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, CHARGE consortium, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, EADI consortium, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43 (5):429–435. doi:10.1038/ng.803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441. doi:10.1038/ng.801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert JC, Gibbs JR, Bras J, Sassi C, Harari O, Bertelsen S, Lupton MK, Powell J, Bellenguez C, Brown K, Medway C, Haddick PC, van der Brug MP, Bhangale T, Ortmann W, Behrens T, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD, Haines JL, Turton J, Braae A, Barber I, Fagan AM, Holtzman DM, Morris JC, 3C Study Group, EADI consortium, Alzheimer’s Disease Genetic consortium, Alzheimer’s Disease Neuroimaging Initiative, GERAD Consortium, Williams J, Kauwe JS, Amouyel P, Morgan K, Singleton A, Hardy J, Goate AM, Cruchaga C (2014) Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging 35 (6):1510.e1519–1526. doi:10.1016/j.neurobiolaging.2013.12.010

    Article  CAS  Google Scholar 

  38. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J, Alzheimer Genetic Analysis Group (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127. doi:10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  39. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472

    Article  CAS  PubMed  Google Scholar 

  40. Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI (2015) Microglial malfunction: the third rail in the development of Alzheimer’s disease. Trends Neurosci 38(10):621–636. doi:10.1016/j.tins.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 Binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by Microglia. Neuron 91(2):328–340. doi:10.1016/j.neuron.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  42. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, European Alzheimer’s Disease Initiative, Genetic and Environmental Risk in Alzheimer’s Disease, Alzheimer’s Disease Genetic Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45 (12):1452–1458. doi:10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, Pocock JM (2016) Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease. Curr Opin Neurobiol 36:74–81. doi:10.1016/j.conb.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  44. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A, Tranebjaerg L, Konttinen Y, Peltonen L (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71(3):656–662. doi:10.1086/342259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nicholson AM, Baker MC, Finch NA, Rutherford NJ, Wider C, Graff-Radford NR, Nelson PT, Clark HB, Wszolek ZK, Dickson DW, Knopman DS, Rademakers R (2013) CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 80(11):1033–1040. doi:10.1212/WNL.0b013e31828726a7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Van Gerpen JA, Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, Dickson DW, Wszolek ZK (2011) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44(2):200–205. doi:10.1038/ng.1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397. doi:10.1016/j.neuron.2014.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139(Pt 4):1265–1281. doi:10.1093/brain/aww016

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX, Tenner AJ, West BL, Green KN (2015) Elimination of Microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci 35(27):9977–9989. doi:10.1523/JNEUROSCI.0336-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, Liu Q (2017) Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. doi:10.1177/0271678X17694185

    PubMed Central  Google Scholar 

  51. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MSGC, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41(7):776–782. doi:10.1038/ng.401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389. doi:10.1002/jnr.20488

    Article  CAS  PubMed  Google Scholar 

  53. Chan A, Seguin R, Magnus T, Papadimitriou C, Toyka KV, Antel JP, Gold R (2003) Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia 43(3):231–242. doi:10.1002/glia.10258

    Article  PubMed  Google Scholar 

  54. Hosmane S, Tegenge MA, Rajbhandari L, Uapinyoying P, Kumar NG, Thakor N, Venkatesan A (2012) Toll/interleukin-1 receptor domain-containing adapter inducing interferon-beta mediates microglial phagocytosis of degenerating axons. Journal Neurosci 32(22):7745–7757. doi:10.1523/JNEUROSCI.0203-12.2012

    Article  CAS  Google Scholar 

  55. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. doi:10.1126/science.aad8373

    Google Scholar 

  56. Huizinga R, van der Star BJ, Kipp M, Jong R, Gerritsen W, Clarner T, Puentes F, Dijkstra CD, van der Valk P, Amor S (2012) Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis. Glia 60(3):422–431. doi:10.1002/glia.22276

    Article  PubMed  Google Scholar 

  57. Rajbhandari L, Tegenge MA, Shrestha S, Ganesh Kumar N, Malik A, Mithal A, Hosmane S, Venkatesan A (2014) Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 62(12):1982–1991. doi:10.1002/glia.22719

    Article  PubMed  Google Scholar 

  58. Janova H, Bottcher C, Holtman IR, Regen T, van Rossum D, Gotz A, Ernst AS, Fritsche C, Gertig U, Saiepour N, Gronke K, Wrzos C, Ribes S, Rolfes S, Weinstein J, Ehrenreich H, Pukrop T, Kopatz J, Stadelmann C, Salinas-Riester G, Weber MS, Prinz M, Bruck W, Eggen BJ, Boddeke HW, Priller J, Hanisch UK (2016) CD14 is a key organizer of microglial responses to CNS infection and injury. Glia 64(4):635–649. doi:10.1002/glia.22955

    Article  PubMed  Google Scholar 

  59. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924

    Article  CAS  PubMed  Google Scholar 

  60. Kim MY, Shu Y, Carsillo T, Zhang J, Yu L, Peterson C, Longhi S, Girod S, Niewiesk S, Oglesbee M (2013) hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain. J Virol 87(2):998–1009. doi:10.1128/JVI.02710-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamner MA, Ye Z, Lee RV, Colman JR, Le T, Gong DC, Ransom BR, Weinstein JR (2015) Ischemic preconditioning in white matter: magnitude and mechanism. J Neurosci 35(47):15599–15611. doi:10.1523/JNEUROSCI.2544-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, Lizasoain I (2009) Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 109(1):287–294. doi:10.1111/j.1471-4159.2009.05972.x

    Article  CAS  PubMed  Google Scholar 

  63. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, Stenzel-Poore MP (2011) Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 31(23):8456–8463. doi:10.1523/JNEUROSCI.0821-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Church JS, Milich LM, Lerch JK, Popovich PG, McTigue DM (2017) E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 65(6):883–899. doi:10.1002/glia.23132

    Article  PubMed  Google Scholar 

  65. Weinstein JR, Quan Y, Hanson JF, Colonna L, Iorga M, Honda S, Shibuya K, Shibuya A, Elkon KB, Moller T (2015) IgM-dependent phagocytosis in microglia is mediated by complement receptor 3, not Fcalpha/mu receptor. J Immunol 195(11):5309–5317. doi:10.4049/jimmunol.1401195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75(4):1539–1547

    Article  CAS  PubMed  Google Scholar 

  67. Marziniak M, Meuth S (2014) Current perspectives on interferon Beta-1b for the treatment of multiple sclerosis. Adv Ther 31(9):915–931. doi:10.1007/s12325-014-0149-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khorooshi R, Morch MT, Holm TH, Berg CT, Dieu RT, Draeby D, Issazadeh-Navikas S, Weiss S, Lienenklaus S, Owens T (2015) Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol (Berl) 130(1):107–118. doi:10.1007/s00401-015-1418-z

    Article  CAS  Google Scholar 

  69. Kraus J, Ling AK, Hamm S, Voigt K, Oschmann P, Engelhardt B (2004) Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 56(2):192–205. doi:10.1002/ana.20161

    Article  CAS  PubMed  Google Scholar 

  70. Stone LA, Frank JA, Albert PS, Bash CN, Calabresi PA, Maloni H, McFarland HF (1997) Characterization of MRI response to treatment with interferon beta-1b: contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology 49(3):862–869

    Article  CAS  PubMed  Google Scholar 

  71. Gesuete R, Packard AE, Vartanian KB, Conrad VK, Stevens SL, Bahjat FR, Yang T, Stenzel-Poore MP (2012) Poly-ICLC preconditioning protects the blood-brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem 123(Suppl 2):75–85. doi:10.1111/j.1471-4159.2012.07946.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, Schepers J, Vos IM, Dijkstra CD, Kappelle LJ, Nicolay K, Bar PR (2003) Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 23(9):1029–1039. doi:10.1097/01.WCB.0000080703.47016.B6

    Article  CAS  PubMed  Google Scholar 

  73. Inacio AR, Liu Y, Clausen BH, Svensson M, Kucharz K, Yang Y, Stankovich T, Khorooshi R, Lambertsen KL, Issazadeh-Navikas S, Deierborg T (2015) Endogenous IFN-beta signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation 12:211. doi:10.1186/s12974-015-0427-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211(8):1533–1549. doi:10.1084/jem.20132477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Becker K, Kindrick D, Relton J, Harlan J, Winn R (2001) Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 32(1):206–211

    Article  CAS  PubMed  Google Scholar 

  76. Becker KJ, McCarron RM, Ruetzler C, Laban O, Sternberg E, Flanders KC, Hallenbeck JM (1997) Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci USA 94(20):10873–10878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245. doi:10.1016/j.surneu.2005.12.028

    Article  PubMed  Google Scholar 

  78. Shichita T, Ago T, Kamouchi M, Kitazono T, Yoshimura A, Ooboshi H (2012) Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 123(Suppl 2):29–38. doi:10.1111/j.1471-4159.2012.07941.x

    Article  CAS  PubMed  Google Scholar 

  79. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950. doi:10.1038/nm.1999

    Article  CAS  PubMed  Google Scholar 

  80. Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1(2):127–137. doi:10.1007/s11481-006-9015-5

    Article  PubMed  Google Scholar 

  81. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605. doi:10.1523/JNEUROSCI.5360-06.2007

    Article  CAS  PubMed  Google Scholar 

  82. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50(4):281–286. doi:10.1002/glia.20205

    Article  PubMed  Google Scholar 

  83. Weinstein JR, Koerner IP, Moller T (2010) Microglia in ischemic brain injury. Futur Neurol 5(2):227–246. doi:10.2217/fnl.10.1

    Article  CAS  Google Scholar 

  84. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448. doi:10.1038/nrn1927

    Article  CAS  PubMed  Google Scholar 

  85. Kariko K, Weissman D, Welsh FA (2004) Inhibition of toll-like receptor and cytokine signaling—A unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 24(11):1288–1304. doi:10.1097/01.WCB.0000145666.68576.71

    Article  CAS  PubMed  Google Scholar 

  86. Zhang J, Yang ZJ, Klaus JA, Koehler RC, Huang J (2008) Delayed tolerance with repetitive transient focal ischemic preconditioning in the mouse. Stroke 39(3):967–974. doi:10.1161/STROKEAHA.107.497412

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412. doi:10.1016/S1474-4422(09)70054-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stenzel-Poore MP, Stevens SL, King JS, Simon RP (2007) Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 38(2 Suppl):680–685. doi:10.1161/01.STR.0000251444.56487.4c

    Article  PubMed  Google Scholar 

  89. Stenzel-Poore MP, Stevens SL, Simon RP (2004) Genomics of preconditioning. Stroke 35(11 Suppl 1):2683–2686. doi:10.1161/01.STR.0000143735.89281.bb

    Article  CAS  PubMed  Google Scholar 

  90. McDonough A, Weinstein JR (2016) Neuroimmune response in ischemic preconditioning. Neurotherapeutics 13(4):748–761. doi:10.1007/s13311-016-0465-z

    Article  CAS  PubMed  Google Scholar 

  91. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, Lessov NS, Simon RP, Stenzel-Poore MP (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28(5):1040–1047. doi:10.1038/sj.jcbfm.9600606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH (2016) Interferon-beta Modulates Inflammatory Response in Cerebral Ischemia. J Am Heart Assoc. doi:10.1161/JAHA.115.002610

    PubMed  PubMed Central  Google Scholar 

  93. Fisher M, Hanley DF, Howard G, Jauch EC, Warach S, Group S (2007) Recommendations from the STAIR V meeting on acute stroke trials, technology and outcomes. Stroke 38(2):245–248. doi:10.1161/01.STR.0000255951.37434.aa

    Article  PubMed  Google Scholar 

  94. Dirnagl U, Endres M (2014) Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 45(5):1510–1518. doi:10.1161/STROKEAHA.113.004075

    Article  PubMed  Google Scholar 

  95. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4(4):399–418. doi:10.1007/s11481-009-9164-4

    Article  PubMed  PubMed Central  Google Scholar 

  96. Takata K, Ginhoux F (2015) Poised for action: USP18 restrains microglial activation in the white matter. EMBO J 34(12):1603–1605. doi:10.15252/embj.201591899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Knobeloch KP, Utermohlen O, Kisser A, Prinz M, Horak I (2005) Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol 25(24):11030–11034. doi:10.1128/MCB.25.24.11030-11034.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Goldmann T, Zeller N, Raasch J, Kierdorf K, Frenzel K, Ketscher L, Basters A, Staszewski O, Brendecke SM, Spiess A, Tay TL, Kreutz C, Timmer J, Mancini GM, Blank T, Fritz G, Biber K, Lang R, Malo D, Merkler D, Heikenwalder M, Knobeloch KP, Prinz M (2015) USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34(12):1612–1629. doi:10.15252/embj.201490791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD, Li Z, van Unen L, Heijsman D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemsen R, Brouwer RW, Van IWF, Martin-Fernandez M, de Coo I, Dudink J, de Vries FA, Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini GM (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213(7):1163–1174. doi:10.1084/jem.20151529

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C, Volpi S, Li Z, Sanal O, Mansouri D, Tezcan I, Rice GI, Chen C, Mansouri N, Mahdaviani SA, Itan Y, Boisson B, Okada S, Zeng L, Wang X, Jiang H, Liu W, Han T, Liu D, Ma T, Wang B, Liu M, Liu JY, Wang QK, Yalnizoglu D, Radoshevich L, Uze G, Gros P, Rozenberg F, Zhang SY, Jouanguy E, Bustamante J, Garcia-Sastre A, Abel L, Lebon P, Notarangelo LD, Crow YJ, Boisson-Dupuis S, Casanova JL, Pellegrini S (2015) Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517(7532):89–93. doi:10.1038/nature13801

    Article  CAS  PubMed  Google Scholar 

  101. Crow YJ, Rehwinkel J (2009) Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 18(R2):R130–136. doi:10.1093/hmg/ddp293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, Jenkinson EM, Bacino CA, Battini R, Bertini E, Brogan PA, Brueton LA, Carpanelli M, De Laet C, de Lonlay P, del Toro M, Desguerre I, Fazzi E, Garcia-Cazorla A, Heiberg A, Kawaguchi M, Kumar R, Lin JP, Lourenco CM, Male AM, Marques W Jr, Mignot C, Olivieri I, Orcesi S, Prabhakar P, Rasmussen M, Robinson RA, Rozenberg F, Schmidt JL, Steindl K, Tan TY, van der Merwe WG, Vanderver A, Vassallo G, Wakeling EL, Wassmer E, Whittaker E, Livingston JH, Lebon P, Suzuki T, McLaughlin PJ, Keegan LP, O’Connell MA, Lovell SC, Crow YJ (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44(11):1243–1248. doi:10.1038/ng.2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Michailidou I, Naessens DM, Hametner S, Guldenaar W, Kooi EJ, Geurts JJ, Baas F, Lassmann H, Ramaglia V (2016) Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia. doi:10.1002/glia.23090

    PubMed  PubMed Central  Google Scholar 

  104. Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE (2002) UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 277(12):9976–9981. doi:10.1074/jbc.M109078200

    Article  CAS  PubMed  Google Scholar 

  105. Zhang D, Zhang DE (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon cytokine Res 31(1):119–130. doi:10.1089/jir.2010.0110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE (2004) Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 10(12):1374–1378. doi:10.1038/nm1133

    Article  CAS  PubMed  Google Scholar 

  107. Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou L, Little MT, Malakhova OA, Sipe JC, Orkin SH, Zhang DE (2002) Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev 16 (17):2207–2212. doi:10.1101/gad.1010202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Crow YJ, Casanova JL (2014) STING-associated vasculopathy with onset in infancy–a new interferonopathy. N Engl J Med 371(6):568–571. doi:10.1056/NEJMe1407246

    Article  PubMed  Google Scholar 

  109. Crow YJ, Manel N (2015) Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 15(7):429–440. doi:10.1038/nri3850

    Article  CAS  PubMed  Google Scholar 

  110. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CC, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371(6):507–518. doi:10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 17 (4):455–460. doi:10.1101/gad.1056303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Filipovic R, Zecevic N (2008) Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol 211(1):41–51. doi:10.1016/j.expneurol.2007.12.024

    Article  CAS  PubMed  Google Scholar 

  113. Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin P, Stoltenburg-Didinger G, Lacaud A, Saliba E, Dammann O, Gallego J, Sizonenko S, Hagberg H, Lelievre V, Gressens P (2011) Systemic inflammation disrupts the developmental program of white matter. Ann Neurol 70(4):550–565. doi:10.1002/ana.22489

    Article  CAS  PubMed  Google Scholar 

  114. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, Honore JC, Quiniou C, Joyal JS, Hardy P, Sennlaub F, Lubell W, Chemtob S (2013) Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol 33(8):1881–1891. doi:10.1161/ATVBAHA.113.301331

    Article  CAS  PubMed  Google Scholar 

  115. McDermott JE, Vartanian KB, Mitchell H, Stevens SL, Sanfilippo A, Stenzel-Poore MP (2012) Identification and validation of Ifit1 as an important innate immune bottleneck. PloS ONE 7(6):e36465. doi:10.1371/journal.pone.0036465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wieghofer P, Knobeloch KP, Prinz M (2015) Genetic targeting of microglia. Glia 63(1):1–22. doi:10.1002/glia.22727

    Article  PubMed  Google Scholar 

  117. Capotondo A, Milazzo R, Politi LS, Quattrini A, Palini A, Plati T, Merella S, Nonis A, di Serio C, Montini E, Naldini L, Biffi A (2012) Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc Natl Acad Sci USA 109(37):15018–15023. doi:10.1073/pnas.1205858109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dorender Dankwa for her assistance with microglial cultures and ELISA analysis. This manuscript was funded by NIH F32NS100245 (A.M.) and NIH R01NS076620 (J.R.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonough, A., Lee, R.V. & Weinstein, J.R. Microglial Interferon Signaling and White Matter. Neurochem Res 42, 2625–2638 (2017). https://doi.org/10.1007/s11064-017-2307-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2307-8

Keywords

Navigation