Skip to main content
Log in

Inwardly Rectifying K+ Currents in Cultured Oligodendrocytes from Rat Optic Nerve are Insensitive to pH

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inwardly rectifying K+ (Kir) channel expression signals at an advanced stage of maturation during oligodendroglial differentiation. Knocking down their expression halts the generation of myelin and produces severe abnormalities in the central nervous system. Kir4.1 is the main subunit involved in the tetrameric structure of Kir channels in glial cells; however, the precise composition of Kir channels expressed in oligodendrocytes (OLs) remains partially unknown, as participation of other subunits has been proposed. Kir channels are sensitive to H+; thus, intracellular acidification produces Kir current inhibition. Since Kir subunits have differential sensitivity to H+, we studied the effect of intracellular acidification on Kir currents expressed in cultured OLs derived from optic nerves of 12-day-old rats. Unexpectedly, Kir currents in OLs (2–4 DIV) did not change within the pH range of 8.0–5.0, as observed when using standard whole-cell voltage-clamp recording or when preserving cytoplasmic components with the perforated patch-clamp technique. In contrast, low pH inhibited astrocyte Kir currents, which was consistent with the involvement of the Kir4.1 subunit. The H+-insensitivity expressed in OL Kir channels was not intrinsic because Kir cloning showed no difference in the sequence reported for the Kir4.1, Kir2.1, or Kir5.1 subunits. Moreover, when Kir channels were heterologously expressed in Xenopus oocytes they behaved as expected in their general properties and sensitivity to H+. It is therefore concluded that Kir channel H+-sensitivity in OLs is modulated through an extrinsic mechanism, probably by association with a modulatory component or by posttranslational modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sontheimer H, Kettenmann H (1988) Heterogeneity of potassium currents in cultured oligodendrocytes. Glia 1:415–420

    Article  CAS  PubMed  Google Scholar 

  2. Sontheimer H (1994) Voltage-dependent ion channels in glial cells. Glia 11:156–172

    Article  CAS  PubMed  Google Scholar 

  3. Barres BA, Koroshetz WJ, Swartz KJ, Chun LLY, Corey DP (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4:507–524

    Article  CAS  PubMed  Google Scholar 

  4. Larson VA, Zhang Y, Bergles DE (2016) Electrophysiological properties of NG2+ cells: matching physiological studies with gene expression profiles. Brain Res 2016(1638):138–160

    Article  Google Scholar 

  5. Sontheimer H, Trotter J, Schachner M, Kettenmann H (1989) Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron 2:1135–1145

    Article  CAS  PubMed  Google Scholar 

  6. Attali B, Wang N, Kolot A, Sobko A, Cherepanov V, Soliven B (1997) Characterization of delayed rectifier Kv channels in oligodendrocytes and progenitor cells. J Neurosci 17:8234–8245

    CAS  PubMed  Google Scholar 

  7. Berger T, Schnitzer J, Kettenmann H (1991) Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice. J Neurosci 1:3008–3024

    Google Scholar 

  8. Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P (2001) Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438

    CAS  PubMed  Google Scholar 

  9. Orkand RK (1980) Extracellular potassium accumulation in the nervous system. Fed Proc 39(5):1515–1518

    CAS  PubMed  Google Scholar 

  10. Hoppe D, Chvatal A, Kettenmann H, Orkand RK, Ransom BR (1991) Characteristics of activity-dependent potassium accumulation in mammalian peripheral nerve in vitro. Brain Res 552:106–112

    Article  CAS  PubMed  Google Scholar 

  11. Ransom CB, Sontheimer H (1995) Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes. J Neurphysiol 73(1): 333–346.

    CAS  Google Scholar 

  12. Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly JO, Ghiani CA, Gallo V, Wilkin GP (2000) Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4. 1, in adult rat CNS. Glia 30(4):362–372

    Article  CAS  PubMed  Google Scholar 

  13. Kalsi AS, Greenwood K, Wilkin G, Butt AM (2004) Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat 204:475–485

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004) Differential assembly of inwardly rectifying K+ channel subunits, Kir4. 1 and Kir5. 1, in brain astrocytes. J Biol Chem 279(42):44065–44073

    Article  CAS  PubMed  Google Scholar 

  15. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Falcão AM, Xiao L, Li H, Häring M, Hochgerner H, Romanov RA, Gyllborg D, Muñoz-Manchado AB, La Manno G, Lönnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352(6291):1326–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366

    Article  CAS  PubMed  Google Scholar 

  17. Gamper N, Rohacs T (2012) Phosphoinositide sensitivity of ion channels, a functional perspective. In: Balla et al. (eds) Phosphoinositides II: the diverse biological functions. Springer, The Netherlands, p 289–333

    Chapter  Google Scholar 

  18. Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brasko C, Hawkins V, De La Rocha IC, Butt AM (2016) Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct 1:19

    Google Scholar 

  20. Moroni RF, Inverardi F, Regondi MC, Pennacchio P, Frassoni C (2015) Developmental expression of Kir4. 1 in astrocytes and oligodendrocytes of rat somatosensory cortex and hippocampus. Int J Dev Neurosci 47:198–205

    Article  CAS  PubMed  Google Scholar 

  21. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, Rothhammer V, Chan A, Gold R, BertheleA, Bennett JL, Korn T, Hemmer B (2012) Potassium channel Kir4. 1 as an immune target in multiple sclerosis. N Engl J Med 367(2):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kraus V, Srivastava R, Kalluri SR, Seidel U, Schuelke M, Schimmel M, Rostasy K, Leiz S, Hosie S, Grummel V, Hemmer B (2014) Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease. Neurology 82:470–473

    Article  CAS  PubMed  Google Scholar 

  23. Lagrutta AA, Bond CT, Xia XM, Pessia M, Tucker S, Adelman JP (1996) Inward rectifier potassium channels. Cloning, expression and structure-function studies. Jpn Heart J 37(5):651–660

    Article  CAS  PubMed  Google Scholar 

  24. Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C (2000) Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J Gen Physiol 116:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai TD, Shuck ME, Thompson DP, Bienkowski MJ, Lee KS (1995) Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes. Am J Physiol 268(5):C1173–C1178

    CAS  PubMed  Google Scholar 

  26. Yuan Y, Shimura M, Hughes BA (2003) Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 549(2):429–438. doi:10.1113/jphysiol.2003.042341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu H, Yang Z, Cui N, Giwa LR, Abdulkadir L, Patel M, Sharma P, Shan G, Shen W, Jiang C (2000) Molecular determinants for the distinct pH sensitivity of Kir1. 1 and Kir4. 1 channels. Am J Physiol 279(5):C1464–C1471

    CAS  Google Scholar 

  28. Tanemoto M, Kittaka N, Inanobe A, Kurachi Y (2000) In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J Physiol 525(3):587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70(1):31–46

    Article  CAS  PubMed  Google Scholar 

  30. Soria FN, Zabala A, Pampliega O, Palomino A, Miguelez C, Ugedo L, Sato H, Matute C, Domercq M (2016) Cystine/glutamate antiporter blockage induces myelin degeneration. Glia 64:1381–1395

    Article  PubMed  Google Scholar 

  31. Arellano RO, Sánchez-Gómez MV, Alberdi E, Canedo-Antelo M, Chara JC, Palomino A, Pérez-Samartín A, Matute C (2016) Axon-to-glia interaction regulates GABAA receptor expression in oligodendrocytes. Mol Pharmacol 89(1):63–74

    Article  CAS  PubMed  Google Scholar 

  32. Matute C, Arellano RO, Conde-Guerri B, Miledi R (1992) mRNA coding for neurotransmitter receptors in a human astrocytoma. PNAS 89(8):3399–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeziorski MC, Greenberg RM, Clark KS, Anderson PA (1998) Cloning and functional expression of a voltage-gated calcium channel α1 subunit from jellyfish. J Biol Chem 273(35):22792–22799

    Article  CAS  PubMed  Google Scholar 

  34. Søe R, Andreasen M, Klaerke DA (2009) Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations. Biochim Biophys Acta 1788(9):1706–1713. doi:10.1016/j.bbamem.2009.07.002

    Article  PubMed  Google Scholar 

  35. Kettenmann H, Schlue WR (1988) Intracellular pH regulation in cultured mouse oligodendrocytes. J Physiol 406(1):147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morihata H, Kawawaki J, Okina M, Sakai H, Notomi T, Sawada M, Kuno M (2008) Early and late activation of the voltage-gated proton channel during lactic acidosis through pH-dependent and -independent mechanisms. Pflugers Arch 455(5):829–838

    Article  CAS  PubMed  Google Scholar 

  37. Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H (2006) Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia 53(5):516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neusch C, Papadopoulos N, Müller M, Maletzki I, Winter SM, Hirrlinger J, Handschuh M, Baöhr M, Richter DW, Kirchhoff F, Hülsmann S (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J Neurophysiol 95(3):1843–1852

    Article  CAS  PubMed  Google Scholar 

  39. Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55(3):274–281

    Article  CAS  PubMed  Google Scholar 

  40. Choe H, Zhou H, Palmer LG and Sackin H (1997) A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol 273(4):F516–F529

    CAS  PubMed  Google Scholar 

  41. Fakler B, Schultz JH, Yang J, Schulte U, Brandle U, Zenner HP, Jan LY, Ruppersberg JP (1996) Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. The EMBO J 15(16):4093

    CAS  PubMed  Google Scholar 

  42. Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216:1341–1343

    Article  CAS  PubMed  Google Scholar 

  43. Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Ren YQ, Bing R, Hillman DE (2000) Alpha 1E subunit of the R-type calcium channel is associated with myelinogenesis. J Neurocytol 29:719–728

    Article  CAS  PubMed  Google Scholar 

  45. Cheli VT, Santiago González DA, Spreuer V, Paez PM (2015) Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol 265:69–83

    Article  CAS  PubMed  Google Scholar 

  46. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  PubMed  Google Scholar 

  47. Ransom BR (1992) Glial modulation of neural excitability mediated by extracellular pH: a hypothesis. Prog Brain Res 94:37–46

    Article  CAS  PubMed  Google Scholar 

  48. Maldonado PP, Vélez-Fort M, Levavasseur F, Angulo MC (2013) Oligodendrocyte precursor cells are accurate sensors of local K+ in mature gray matter. J Neurosci 33:2432–2442

    Article  CAS  PubMed  Google Scholar 

  49. Bolton S, Butt AM (2006) Cyclic AMP-mediated regulation of the resting membrane potential in myelin-forming oligodendrocytes in the isolated intact rat optic nerve. Exp Neurol 202:36–43

    Article  CAS  PubMed  Google Scholar 

  50. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J Biol Chem 279(36):37271–37281

    Article  CAS  PubMed  Google Scholar 

  51. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Flakler B, Ludwig J (1999) pH gating of ROMK (Kir1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. PNAS 96(26):15298–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang R, Su J, Wang X, Piao H, Zhang X, Adams CY, Cui N, Jiang C (2005) Subunit stoichiometry of the Kir1.1 channel in proton-dependent gating. J Biol Chem 280(14):13433–13441

    Article  CAS  PubMed  Google Scholar 

  53. Leng Q, MacGregor GG, Dong K, Giebisch G, Hebert SC (2006) Subunit–subunit interactions are critical for proton sensitivity of ROMK: evidence in support of an intermolecular gating mechanism. PNAS 103(6):1982–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rapedius M, Paynter JJ, Fowler P, Shang L, Sansom M, Tucker SJ, Baukrowitz T (2007) Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H+-Bonding at the helix-bundle crossing. Channels (Austin) 1(5):327–330

    Article  Google Scholar 

  55. Rapedius M, Haider S, Browne KF, Shang L, Sansom MS, Baukrowitz T, Tucker SJ (2006) Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep 7(6):611–616

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sepúlveda FV, Cid LP, Teulon J, Niemeyer MI (2015) Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 95(1):179–217

    Article  PubMed  PubMed Central  Google Scholar 

  57. Paynter JJ, Shang L, Bollepalli MK, Baukrowitz T, Tucker SJ (2010) Random mutagenesis screening indicates the absence of a separate H+-sensor in the pH-sensitive Kir channels. Channels (Austin) 4(5):390–397

    Article  CAS  Google Scholar 

  58. Leung YM, Zeng WZ, Liou HH, Solaro CR, Huang CL (2000) Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms. J Biol Chem 275(14):10182–10189

    Article  CAS  PubMed  Google Scholar 

  59. Brown AM, Ransom BR (2015) Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity. Metab Brain Dis 30(1):233–239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Saioa Marcos, Horacio Leyva, and Leonor Casanova for technical assistance, and Jessica González Norris for editing the manuscript. This work is supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica DGAPA-UNAM [Grant IN205615] and Consejo Nacional de Ciencia y Tecnología, México [Grant 252121] to R.O.A.; and Ministerio de Economía y Competitividad/Fondos Europeos de Desarrollo Regional [Grants SAF2016-75292-R and SAF2013-45084-R] and the Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas [Grant PRY-15-404] to C.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Matute or Rogelio O. Arellano.

Additional information

Alberto Pérez-Samartín and Edith Garay have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Samartín, A., Garay, E., Moctezuma, J.P.H. et al. Inwardly Rectifying K+ Currents in Cultured Oligodendrocytes from Rat Optic Nerve are Insensitive to pH. Neurochem Res 42, 2443–2455 (2017). https://doi.org/10.1007/s11064-017-2242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2242-8

Keywords

Navigation