Skip to main content

Advertisement

Log in

Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K+, indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ames A 3rd (2000) CNS energy metabolism as related to function. Brain Research Reviews 34:42–68

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baltan Tekkök S, Brown AM, Ransom BR (2003) Axon function persists during anoxia in mammalian white matter. J Cereb Blood Flow Met 23:1340–1348

    Google Scholar 

  • Baltan Tekkök S, Brown AM, Westenbroek RE, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652

    Article  Google Scholar 

  • Bellinger SC, Miyazawa G, Steinmetz PN (2008) Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study. J Neural Eng 5:263–274

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry. W H Freeman & Co., New York

    Google Scholar 

  • Boron WF, Boulpaep EL (2009) Medical Physiology: Elsevier.

  • Bradbury MG (1979) The concept of the blood brain barrier. Sons, London Wiley and

    Google Scholar 

  • Brockmann K, Wang D, Korenke CG, von Moers A, Ho YY, Pascual JM, Kuang K, Yang H, Ma L, Kranz-Eble P, Fischbarg J, Hanefeld F, De Vivo DC (2001) Autosomal dominant glut-1 deficiency syndrome and familial epilepsy. Ann Neurol 50:476–485

    Article  CAS  PubMed  Google Scholar 

  • Brown AM (2013) Glycogen and energy metabolism. In: Neuroglia, 3rd Edition (Ransom BR, Kettenmann H, eds), pp 457–469: Oxford University Press

  • Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66:839–843

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Tekkok SB, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol 549:501–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burdakov D, Luckman SM, Verkhratsky A (2005) Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360:2227–2235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cater HL, Benham CD, Sundstrom LE (2001) Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. Journal of Physiology 531:459–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coles JA, Deitmer JW (2005) Extracellular potassium and pH: homeostsis and signalling. In: Neuroglia, 2nd Edition (Ransom BR, Kettenmann H, eds), pp 334–345: Oxford University Press

  • Devaux J, Gow A (2008) Tight junctions potentiate the insulative properties of small CNS myelinated axons. J Cell Biol 183:909–921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA (2009) Energy metabolism in the brain. In: From Molecules to Networks: An introduction to cellular and molecular neuroscience, Second Edition (Byrne JH, Roberts JL, eds), pp 49–110: Academic Press, Amsterdam

  • Dienel GA, Cruz NF (2014) Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis doi:10.1007/s11011-014-9493-8

  • DiNuzzo M, Maraviglia B, Giove F (2011) Why does the brain (not) have glycogen? Bioessays 33:319–326

    Article  CAS  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frier BM, Fisher BM (2007) Hypoglycaemia in Clinical Diabetes, 2nd, Editionth edn. John Wiley and Sons, Ltd., New York

    Book  Google Scholar 

  • Golgi C (1885–1886) Sulla fina anatomia della sistema nervosa. Riv Sper Freniatr 8:9

    Google Scholar 

  • Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Research 120:231–249

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Dienel GA (2002) Energy metablism in the brain. In: Glucose metabolism in the brian (Dwyer D, ed), pp 1–102: Academic Press.

  • Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na(+), K(+)-ATPase and Marie E. Gibbs‘ pioneering learning studies. Front Integr Neurosci 7:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hille B (2001) Ionic Channels of Excitable Membranes. Sinauer Associates Inc., Sunderland, MA, USA

    Google Scholar 

  • Kocsis JD, Waxman SG (1980) Absence of potassium conductance in central myelinated axons. Nature 287:348–349

    Article  CAS  PubMed  Google Scholar 

  • McIlwain H, Bachelard HS (1985) Biochemistry and the Central Nervous System. Churchill Livingstone, London

    Google Scholar 

  • McKenna MC, Gruetter R, Sonnewald U, Waagepetersen HS, Schousboe A (2006) Energy Metabolism of the Brain. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic Neurochemistry. Academic, San Diego, pp 531–558

    Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    Article  CAS  PubMed  Google Scholar 

  • Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends In Pharmacological Sciences 11:462–468

    Article  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Hamprecht B (2007) Glycogen phosphorylase isozymes and energy metabolism in the rat peripheral nervous system–an immunocytochemical study. Brain Res 1136:20–27

    Article  CAS  PubMed  Google Scholar 

  • Rasband MN (2004) It‘s “juxta” potassium channel! J Neurosci Res 76:749–757

    Article  CAS  PubMed  Google Scholar 

  • Ritchie JM (1995) Physiology of axons. In: Waxman SG, Kocsis JD, Stys PK (eds) The Axon: Structure, Function and Pathophysiology. Oxford University Press, Oxford

    Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11:85–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proceedings of the National Academy of Sciences USA 98:6417–6422

    Article  CAS  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sykova E, Czeh G, Kriz N (1980) Potassium accumulation in the frog spinal cord induced by nociceptive stimulation of the skin. Neurosci Lett 17:253–258

    Article  CAS  PubMed  Google Scholar 

  • Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21:2–21

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Butt A (2007) Glial neurobiology: Wiley and Sons.

  • Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, De Vivo DC (2005) Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 57:111–118

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH (2004) The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53:1959–1965

    Article  CAS  PubMed  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    CAS  PubMed  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus M. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, A.M., Ransom, B.R. Astrocyte glycogen as an emergency fuel under conditions of glucose deprivation or intense neural activity. Metab Brain Dis 30, 233–239 (2015). https://doi.org/10.1007/s11011-014-9588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9588-2

Keyword

Navigation