Skip to main content

Advertisement

Log in

Nigella sativa Oil Reduces Extrapyramidal Symptoms (EPS)-Like Behavior in Haloperidol-Treated Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The symptoms of Parkinsonism and oral dyskinesia have been showing to be induced by neuroleptics that significantly affect its clinical use. In this study, we investigate whether Nigella sativa-oil (NS) (black cumin seeds)—a traditional medicine used for the seizure treatment in eastern country—may reduce the haloperidol (HAL)-induced extrapyramidal symptoms (EPS)-like behavior in rats. After combine treatment with HAL (1 mg/kg) on NS (0.2 ml/rat), rats displayed a significant decreased EPS-like behavior including movement disorders and oral dyskinesia as compared to controls. Immunohistochemical analysis indicates that NS reduced astrogliosis in caudate and accumbens nuclei. These results suggest that NS may consider as an adjunct to antipsychotics to reduce the EPS-like side effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NS:

Nigella sativa

HAL + NS:

Haloperidol + Nigella sativa oil

VCMs:

Vacuous chewing movements

EPS:

Extrapyramidal symptoms

References

  1. Waddington JL (1989) Schizophrenia, affective psychoses, and other disorders treated with neuroleptic drugs: the enigma of tardive dyskinesia, its neurobiological determinants, and the conflict of paradigms. Int Rev Neurobiol 31:297–353

    Article  CAS  PubMed  Google Scholar 

  2. Malik T, Haleem DJ (2012) Injected Haloperidol-induced motor deficits are potentiated in rats drinking green tea as sole source of water: Relationship with dopamine metabolism in the caudate. J Food Drug Anal 20(4):822–831

    CAS  Google Scholar 

  3. Malik T, Haleem DJ (2010) Green tea (Camellia sinensis) potentiates haloperidol–induced extrapyramidal symptoms and decreases dopamine metabolism in the dorsal striatum of rats. K. U. J Science 38:12–14

    Google Scholar 

  4. Haleem DJ, Batool F, Khan, NH, Kamil N, Ali O, Saify ZS, Haleem MA (2002) Differences in the effects of haloperidol and clozapine on brain serotonin and dopamine metabolism and on tests related to extrapyramidal functions in rats. Med Sci Monit 8:BR 354–361

    CAS  Google Scholar 

  5. Mackenzie IR, Feldman H (2004) Extrapyramidal features in patients with motor neuron disease and dementia; a clinicopathological correlative study. Acta Neuropathol 107:336–340

    Article  PubMed  Google Scholar 

  6. Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89:277–287.

    Article  CAS  PubMed  Google Scholar 

  7. Mitchell IJ, Cooper AC, Griffiths MR, Cooper AJ (2002) Acute administration of haloperidol induces apoptosis of neurons in the striatum and substantia nigra in the rat. Neuroscience 109:89–99

    Article  CAS  PubMed  Google Scholar 

  8. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andreassen OA, Ferrante RJ, Beal MF, Jorgensen HA (1998) Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid. Neuroscience 87:639–648

    Article  CAS  PubMed  Google Scholar 

  10. Nyberg S, Nordstrom AL, Halldin C, Farde L (1995) Positron emission tomography studies on D2 dopamine receptor occupancy and plasma antipsychotic drug levels in man. Int Clin Psychopharmacol 10(Suppl 3):81–85

    PubMed  Google Scholar 

  11. Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B, Meltzer HY (2005) Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol. Neuropsychopharmacology 30:2283–2289

    Article  CAS  PubMed  Google Scholar 

  12. Cookson MR, Pentreath VW (1994) Alterations in the glial fibrillary acidic protein content of primary astrocyte cultures for evaluation of glial cell toxicity. Toxicol In Vitro 8:351–359

    Article  CAS  PubMed  Google Scholar 

  13. Fibiger HC (1994) Neuroanatomical targets of neuroleptic drugs as revealed by c- Fos immunochemistry. J Clin Psychiatry 55(Suppl B):33–36

    PubMed  Google Scholar 

  14. Park J, Chung S, An H, Kim J, Seo J, Kim DH, Yoon SY (2012) Haloperidol and clozapine block formation of autophagolysosomes in rat primary neurons. Neuroscience 209:64–73

    Article  CAS  PubMed  Google Scholar 

  15. Wright AM, Bempong J, Kirby ML, Barlow RL, Bloomquist JR (1998) Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia. Brain Res 788:215–222

    Article  CAS  PubMed  Google Scholar 

  16. Haleem DJ, Shireen E, Haleem MA (2004) Somatodendritic and postsynaptic serotonin-1 A receptors in the attenuation of haloperidol-induced catalepsy. Prog Neuropsychopharmacol Biol Psychiatry 28:1323–1329

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Colodner KJ, Feany MB (2011) Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model. J Neurosci 31:2868–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Post A, Holsboer F, Behl C (1998) Induction of NF-kappaB activity during haloperidol-induced oxidative toxicity in clonal hippocampal cells: suppression of NF-kappaB and neuroprotection by antioxidants. J Neurosci 18:8236–8246

    CAS  PubMed  Google Scholar 

  19. Naidu PS, Singh A, Kulkarni SK (2002) Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br J Pharmacol 136:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lerner V, Miodownik C (2011) Motor symptoms of schizophrenia: is tardive dyskinesia a symptom or side effect? a modern treatment. Curr Psychiatry Rep 4:295–304

    Article  Google Scholar 

  21. el-Dakhakhny M (1965) Studies on the Egyptian Nigella sativa L. IV. Some pharmacological properties of the seeds’ active principle in comparison to its dihydro compound and its polymer. Arzneimittelforschung 15:1227–1229

    CAS  PubMed  Google Scholar 

  22. Lautenbacher LM (1997) Schwarzkummelol. Dtsch Apoth Ztg 137:68–69.

    Google Scholar 

  23. Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    Article  CAS  PubMed  Google Scholar 

  24. Akhondian J, Parsa A, Rakhshande H (2007) The effect of Nigella sativa L. (black cumin seed) on intractable pediatric seizures. Med Sci Monit 13:CR555–C559

    PubMed  Google Scholar 

  25. Perveen T, Haider S, Kanwal S, Haleem DJ (2009) Repeated administration of Nigella sativa decreases 5-HT turnover and produce anxiolytic effects in rats. Pak. J Pharm Sci 22:139–144

    Google Scholar 

  26. Meral I, Yener Z, Kahraman T, Mert N (2001) Effect of Nigella sativa on glucose concentration, lipid peroxidation, anti-oxidant defense system and liver damage in experimentally-induced diabetic rabbits. J Vet Med A Physiol Pathol Clin Med 48:593–599

    Article  CAS  PubMed  Google Scholar 

  27. Alemi M, Sabouni F, Sanjarian F, Haghbeen K, Ansari S (2013) Anti-inflammatory Effect of Seeds and Callus of Nigella sativa L. extracts on mix glial cells with regard to their Thymoquinone content. AAPS PharmSciTech 14(1):160–167

    Article  CAS  PubMed  Google Scholar 

  28. Bano F, Ahmed F, Parveen T, Saida Haider (2014) Anxiolytic and hyperlocomotive effects of aqueous extract of Nigella sativa L. seeds in rats. Pak. J. Pharm. Sci 27(5 Special):1547–1552

    Google Scholar 

  29. Salem ML (2005) Immunomodulatroy and therapeutic properties of the Nigella sativa seed. Int Immunopharmacol 5:1749–1770

    Article  CAS  PubMed  Google Scholar 

  30. Kanter M (2008) Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res 33:579–588

    Article  CAS  PubMed  Google Scholar 

  31. Kanter M (2008) Protective effects of Nigella sativa on the neuronal injury in frontal cortex and brain stem after chronic toluene exposure. Neurochem Res 33:2241–2249

    Article  CAS  PubMed  Google Scholar 

  32. Haleem DJ, Samad N, Haleem MA (2007) Reversal of haloperidol-induced tardive vacuous chewing movements and supersensitive somatodendritic serotonergic response by buspirone in rats. Pharmacol Biochem Behav 87:115–121

    Article  CAS  PubMed  Google Scholar 

  33. Haleem DJ, Samad N, Haleem MA (2007) Reversal of haloperidol-induced extrapyramidal symptoms by buspirone: a time-related study. Behav Pharmacol 18:147–153

    Article  CAS  PubMed  Google Scholar 

  34. Ikeda H, Adachi K, Hasegawa M (1999) Effects of chronic haloperidol and clozapine on vacuous chewing and dopamine-mediated jaw movements in rats: evaluation of a revised animal model of tardive dyskinesia. J Neural Transm 106:1205–1216

    Article  CAS  PubMed  Google Scholar 

  35. Gerace E, Salomone A, Pellegrino S, Vincenti M (2012) Evidence of Haldol (haloperidol) long-term intoxication. Forensic Sci Int 215(1):121–123

    Article  CAS  PubMed  Google Scholar 

  36. Sakai K, Gao XM, Tamminga CA (2001) Scopolamine fails to diminish chronic haloperidol-induced purposeless chewing in rats. Psychopharmacology (Berl) 153:191–195

    Article  CAS  Google Scholar 

  37. Turrone P, Remington G, Nobrega JN (2002) The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D2 receptor occupancy? Neurosci Biobehav Rev 26:361–380

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Compact thirds edition.

  39. Haleem DJ (2006) Serotonergic modulation of dopamine neurotransmission: a mechanism for enhancing therapeutics in schizophrenia. J Coll Physicians Surg Pak 16:556–562

    PubMed  Google Scholar 

  40. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  CAS  PubMed  Google Scholar 

  41. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  42. Sofroniew M (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152:391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Andreassen OA, Finsen B, Ostergaard K, West MJ, Jorgensen HA (2000) Reduced number of striatal neurons expressing preprosomatostatin mRNA in rats with oral dyskinesias after long-term haloperidol administration. Neurosci Lett 279:21–24

    Article  CAS  PubMed  Google Scholar 

  45. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like barriers to leukocytes during adaptive immune inflammation of the central nervous system. J Neurosci 29:11511–11522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Egan MF, Hurd Y, Ferguson J, Bachus SE, Hamid EH, Hyde TM (1996) Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol. Psychopharmacology (Berl) 127:337–345

    Article  CAS  Google Scholar 

  47. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders: fourth addition. American Psychiatric Press, Washington, DC

    Google Scholar 

  48. Salamone JD, Mayorga AJ, Trevitt JT, Cousins NS, Conlan A, Nowab A (1998) Tremulous jaw movements in rats: a model of Parkinsonian tremor. Prog Neurobiol 56:591–611

    Article  CAS  PubMed  Google Scholar 

  49. Kenter M, Coskun, O, Kalayci, M, Buyukbas S, Cagavi F (2006) Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol 25:127–133

    Article  Google Scholar 

  50. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37: 510–518.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tafheem Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, T., Hasan, S., Pervez, S. et al. Nigella sativa Oil Reduces Extrapyramidal Symptoms (EPS)-Like Behavior in Haloperidol-Treated Rats. Neurochem Res 41, 3386–3398 (2016). https://doi.org/10.1007/s11064-016-2073-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2073-z

Keywords

Navigation