Skip to main content

Advertisement

Log in

Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Several experimental and epidemiological reports have associated manganese exposure with induction of oxidative stress and locomotor dysfunctions. Diphenyl diselenide (DPDS) is widely reported to exhibit antioxidant, anti-inflammatory and neuroprotective effects in in vitro and in vivo studies via multiple biochemical mechanisms. The present study investigated the protective effect of DPDS on manganese-induced toxicity in Drosophila melanogaster. The flies were exposed, in a dietary regimen, to manganese alone (30 mmol per kg) or in combination with DPDS (10 and 20 µmol per kg) for 7 consecutive days. Exposure to manganese significantly (p < 0.05) increased flies mortality, whereas the survivors exhibited significant locomotor deficits with increased acetylcholinesterase (AChE) activity. However, dietary supplementation with DPDS caused a significant decrease in mortality, improvement in locomotor activity and restoration of AChE activity in manganese-exposed flies. Additionally, the significant decreases in the total thiol level, activities of catalase and glutathione-S-transferase were accompanied with significant increases in the generation of reactive oxygen and nitrogen species and thiobarbituric acid reactive substances in flies exposed to manganese alone. Dietary supplementation with DPDS significantly augmented the antioxidant status and prevented manganese-induced oxidative stress in the treated flies. Collectively, the present data highlight that DPDS may be a promising chemopreventive drug candidate against neurotoxicity resulting from acute manganese exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. US EPA (2003) Health effects support document for manganese. U.S. Environmental Protection Agency, Office of Water, EPA. EPA-822-R-03-003, Washington, D.C

  2. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–128

    Article  CAS  PubMed  Google Scholar 

  3. Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernández-Avila M, Amarasiriwardena C, Hu H, Bellinger DC, Wright RO, Téllez-Rojo MM (2012) Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect 120:126–131

    Article  PubMed  Google Scholar 

  4. Avila DS, Puntel RL, Aschner M (2013) Manganese in health and disease. Met Ions Life Sci 13:199–227

    Article  PubMed  Google Scholar 

  5. Zoni S, Lucchini RG (2013) Manganese exposure: cognitive, motor and behavioral effects on children: a review of recent findings. Curr Opin Pediatr 25:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim G, Lee HS, Seok Bang J, Kim B, Ko D, Yang M (2015) A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33:229–254

    Article  CAS  PubMed  Google Scholar 

  7. Burton NC, Guilarte TR (2009) Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates. Environ Health Perspect 117:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roels HA, Bowler RM, Kim Y, Claus Henn B, Mergler D, Hoet P, Gocheva VV, Bellinger DC, Wright RO, Harris MG, Chang Y, Bouchard MF, Riojas-Rodriguez H, Menezes-Filho JA, Tellez-Rojo MM (2012) Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology 33:872–880

    Article  CAS  PubMed  Google Scholar 

  9. Guilarte TR (2013) Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci 5:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santos D, Batoreu C, Mateus L, Marreilha Dos Santos AP, Aschner M (2014) Manganese in human parenteral nutrition: considerations for toxicity and biomonitoring. Neurotoxicology 43:36–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr 2:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosa RM, Roesler R, Braga AL, Saffi J, Henriques JA (2007) Pharmacology and toxicology of diphenyl diselenide in several biological models. Braz J Med Biol Res 40:1287–1304

    Article  CAS  PubMed  Google Scholar 

  15. de Bem AF, Farina M, Portella RL, Nogueira CW, Dinis TCP, Laranjinha JAN, Almeida LM, Rocha JBT (2008) Diphenyldiselenide, a simple glutathione peroxidase mimetic, inhibits human LDL oxidation in vitro. Atherosclerosis 201:92–100

    Article  PubMed  Google Scholar 

  16. Kade IJ, Borges VC, Savegnago L, Ibukun EO, Zeni G, Nogueira CW, Rocha JB (2009) Effect of oral administration of diphenyl diselenide on antioxidant status, and activity of delta aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase, in streptozotocin-induced diabetic rats. Cell Biol Toxicol 25:415–424

    Article  CAS  PubMed  Google Scholar 

  17. Posser T, de Paula MT, Franco JL, Leal RB, Rocha JBT (2010) Diphenyl diselenide induces apoptotic cell death and modulates ERK1/2 phosphorylation in human neuroblastoma SH-SY5Y cells. Arch Toxicol 117:645–651

    Google Scholar 

  18. Corte CLD, Soares FAA, Aschner M, Rocha JBT (2012) Diphenyl diselenide prevents methylmercury-induced mitochondrial dysfunction in rat liver slices. Tetrahedron 68:10437–10443

    Article  Google Scholar 

  19. Avila DS, Benedetto A, Au C, Manarin F, Erikson K, Soares FA, Rocha JB, Aschner M (2012) Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress. Free Radic Biol Med 52:1903–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M, Brance F, Castegnara JJ, Descotes J, Hemminiky K, Lindsay D, Schilter B (2000) Biomarkers as predictive tools in toxicity testing. The report and recommendations of ECVAM workshop 40. Alt Lab Anim 28:119–131

    Google Scholar 

  21. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jafari M (2010) Drosophila melanogaster as a model system for the evaluation of anti-aging compounds. Fly (Austin) 4:253–257

    Article  CAS  Google Scholar 

  23. Riemensperger T, Issa AR, Pech U, Coulom H, Nguyễn MV, Cassar M, Jacquet M, Fiala A, Birman S (2013) A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease. Cell Rep 5:952–960

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen TB, Ida H, Shimamura M, Kitazawa D, Akao S, Yoshida H, Inoue YH, Yamaguchi M (2014) Role of SCOX in determination of Drosophila melanogaster lifespan. Am J Cancer Res 4:325–336

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Adedara IA, Klimaczewski CV, Barbosa NB, Farombi EO, Souza DO, Rocha JBT (2015) Influence of diphenyl diselenide on chlorpyrifos-induced toxicity in Drosophila melanogaster. J Trace Elem Med Biol 32:52–59

    Article  CAS  PubMed  Google Scholar 

  26. Bonilla E, Contreras R, Medina-Leendertz S, Mora M, Villalobos V, Bravo Y (2012) Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology 294:50–53

    Article  CAS  PubMed  Google Scholar 

  27. Mora M, Bonilla E, Medina-Leendertz S, Bravo Y, Arcaya JL (2014) Minocycline increases the activity of superoxide dismutase and reduces the concentration of nitric oxide, hydrogen peroxide and mitochondrial malondialdehyde in manganese treated Drosophila melanogaster. Neurochem Res 39:1270–1278

    Article  CAS  PubMed  Google Scholar 

  28. Le Bourg E, Lints FA (1992) Hypergravity and aging in Drosophila melanogaster. 4. Climbing activity. Gerontology 38:59–64

    Article  PubMed  Google Scholar 

  29. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  30. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  31. Pérez-Severiano F, Santamaría A, Pedraza-Chaverri J, Medina-Campos ON, Ríos C, Segovia J (2004) Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 29:729–733

    Article  PubMed  Google Scholar 

  32. Puntel RL, Roos DH, Grotto D, Garcia SC, Nogueira CW, Rocha JB (2007) Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates. Life Sci 81:51–62

    Article  CAS  PubMed  Google Scholar 

  33. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  34. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  35. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  PubMed  Google Scholar 

  36. Abolaji OA, Kamdem JP, Lugokenski TH, Nascimento TK, Waczuk EP, Farombi EO, Loreto ÉL, Rocha JBT (2014) Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radic Biol Med 71:99–108

    Article  PubMed  Google Scholar 

  37. Aschner M, Dorman DC (2006) Manganese: pharmacokinetics and molecular mechanisms of brain uptake. Toxicol Rev 25:147–154

    Article  CAS  PubMed  Google Scholar 

  38. Evren V, Apaydin M, Khalilnezhad A, Erbas O, Taskiran D (2015) Protective effect of edaravone against manganese-induced toxicity in cultured rat astrocytes. Environ Toxicol Pharmacol 40:563–567

    Article  CAS  PubMed  Google Scholar 

  39. Farina M, Avila DS, da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorojod RM, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler ML (2015) The autophagic-lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med 87:237–251

    Article  CAS  PubMed  Google Scholar 

  41. de Bem AF, de Lima Portella R, Farina M, Perottoni J, Paixão MW, Nogueira CW, Teixeira Rocha JB (2007) Low toxicity of diphenyldiselenide in rabbits: a long-term study. Basic Clin Pharmacol Toxicol 101:47–55

    Article  PubMed  Google Scholar 

  42. Barbosa NB, Rocha JB, Soares JC, Wondracek DC, Gonçalves JF, Schetinger MR, Nogueira CW (2008) Dietary diphenyl diselenide reduces the STZ-induced toxicity. Food Chem Toxicol 46:186–194

    Article  CAS  PubMed  Google Scholar 

  43. Day J, Damsma G, Fibiger HC (1991) Cholinergic activity in the rat hippocampus, cortex and striatum correlates with locomotor activity: an in vivo microdialysis study. Pharmacol Biochem Behav 38:723–729

    Article  CAS  PubMed  Google Scholar 

  44. Liapi C, Zarros A, Galanopoulou P, Theocharis S, Skandali N, Al-Humadi H, Anifantaki F, Gkrouzman E, Mellios Z, Tsakiris S (2008) Effects of short-term exposure to manganese on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase: modulation by l-cysteine. Basic Clin Pharmacol Toxicol 103:171–175

    Article  CAS  PubMed  Google Scholar 

  45. Chtourou Y, Fetoui H, Garoui EM, Zeghal N (2012) Improvement of cerebellum redox states and cholinergic functions contribute to the beneficial effects of silymarin against manganese-induced neurotoxicity. Neurochem Res 37:469–479

    Article  CAS  PubMed  Google Scholar 

  46. Lebda MA, El-Newwshy MS, El-Sayed YS (2012) Neurohepatic toxicity of subacute manganese chloride exposure and potential chemoprotective effects of lycopene. Neurotoxicology 33:98–104

    Article  CAS  PubMed  Google Scholar 

  47. Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP (2012) The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 292:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Micic D, Micic J, Kaltzo I, Spatz M (1978) Effect of pentobarbital on the synaptosomal activity of acetylcholinesterase in Mongolian gerbils. Experientia 34:169–170

    Article  CAS  PubMed  Google Scholar 

  49. Vernadakis A, Rutledge CO (1973) Effects of ether and pentobarbital anaesthesia on the activities of brain acetylcholinesterase and butyrylcholinesterase in young adult rats. J Neurochem 20:1503–1504

    Article  CAS  PubMed  Google Scholar 

  50. Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP (2012) Comments to the Editor concerning the cholinergic response to manganese-induced neurotoxicity, based on the paper entitled “The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the brain” by Santos et al. Toxicology 298:59–60

    Article  Google Scholar 

  51. Adedara IA, Rosemberg DB, Souza DO, Kamdem JP, Farombi EO, Aschner M, Rocha JBT (2015) Biochemical and behavioral deficits in lobster cockroach Nauphoeta cinerea model of methylmercury exposure. Toxicol Res 4:442–451

    Article  CAS  Google Scholar 

  52. Adedara IA, Rosemberg DB, de Souza D, Farombi EO, Aschner M, Souza DO, Rocha JBT (2016) Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos. Pesticide Biochem Physiol. doi:10.1016/j.pestbp.2015.12.004

    Google Scholar 

  53. Milatovic D, Gupta RC, Aschner M (2006) Anticholinesterase toxicity and oxidative stress. Sci World J 6:295–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the TWAS-CNPq 2013 Postdoctoral Fellowship (FR number: 3240274252) awarded to IAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac A. Adedara.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adedara, I.A., Abolaji, A.O., Rocha, J.B.T. et al. Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity. Neurochem Res 41, 1430–1438 (2016). https://doi.org/10.1007/s11064-016-1852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1852-x

Keywords

Navigation