Skip to main content

Advertisement

Log in

Cardiotrophin-1 (CT-1) Improves High Fat Diet-Induced Cognitive Deficits in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies demonstrated that a high fat diet (HFD) results in a loss of working memory in mice correlated with neuroinflammatory changes as well as synaptodendritic abnormalities and brain insulin resistance. Cardiotrophin-1 (CT-1), a member of the gp130 cytokine family, has been shown to potentially play a critical role in obesity and the metabolic syndrome. Our recent studies have demonstrated that CT-1 attenuates cognitive impairment and glucose-uptake defects induced by amyloid-β in mouse brain through inhibiting GSK-3β activity. In this study, we evaluated the effect of CT-1 on cognitive impairment induced by brain insulin resistance in mice fed a HFD, and explored its potential mechanism. CT-1 (1 μg/day, intracerebroventricular injection) was given for 14 days to mice that were fed with either a HFD or normal diet for 18 weeks. After 20 weeks of treatment, our results showed that in the HFD group, CT-1 significantly improved learning and memory deficits and alleviated neuroinflammation demonstrated by decreasing brain levels of proinflammatory cytokine tumour necrosis factor-α and interleukin-1β, and increasing brain levels of anti-inflammatory cytokine IL-10. CT-1 significantly reduced body weight gain, restored normal levels of blood glucose, fatty acids and cholesterol. Furthermore, CT-1 significantly enhanced insulin/IGF signaling pathway as indicated by increasing the expression levels of insulin receptor substrate 1 (IRS-1) and the phosphorylation of Akt/GSK-3β, and reducing the phosphorylation of IRS-1 in the hippocampus compared to control. Moreover, CT-1 increased the level of the post-synaptic protein, PSD95, and drebrin, a dendritic spine-specific protein in the hippocampus. These results indicate a previously unrecognized potential of CT-1 in alleviating high-fat diet induced cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CT-1:

Cardiotrophin-1

GSK-3β:

Glycogen synthase kinase-3β

HFD:

High fat diet

IL-10:

Interleukin-10

IL-1β:

Interleukin-1β

IR:

Insulin resistance

IRS-1:

Insulin receptor substrate 1

IIS:

Insulin/IGF signaling

PSD95:

Postsynaptic density protein 95

SYP:

The action of synapsin I

TNF-α:

Tumor necrosis factor-α

References

  1. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH, American Heart A, Obesity Committee of the Council on Nutrition PA, Metabolism (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918

    Article  PubMed  Google Scholar 

  2. Olufadi R, Byrne CD (2008) Clinical and laboratory diagnosis of the metabolic syndrome. J Clin Pathol 61:697–706

    Article  CAS  PubMed  Google Scholar 

  3. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  5. Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer’s disease: the cholesterol connection. Nat Neurosci 6:345–351

    Article  CAS  PubMed  Google Scholar 

  6. Casserly IP, Topol EJ (2004) Convergence of atherosclerosis and Alzheimer’s disease: cholesterol, inflammation, and misfolded proteins. Discov Med 4:149–156

    PubMed  Google Scholar 

  7. Lu J, Wu DM, Zheng YL, Sun DX, Hu B, Shan Q, Zhang ZF, Fan SH (2009) Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway. Brain Behav Immun 23:193–203

    Article  CAS  PubMed  Google Scholar 

  8. Taghibiglou C, Bradley CA, Gaertner T, Li Y, Wang Y, Wang YT (2009) Mechanisms involved in cholesterol-induced neuronal insulin resistance. Neuropharmacology 57:268–276

    Article  CAS  PubMed  Google Scholar 

  9. Sinclair AJ, Girling AJ, Bayer AJ (2000) Cognitive dysfunction in older subjects with diabetes mellitus: impact on diabetes self-management and use of care services. All Wales Research into Elderly (AWARE) Study. Diabetes Res Clin Pract 50:203–212

    Article  CAS  PubMed  Google Scholar 

  10. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Craft S (2005) Insulin resistance syndrome and Alzheimer’s disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol Aging 26(Suppl 1):65–69

    Article  PubMed  Google Scholar 

  12. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088

    Article  PubMed Central  PubMed  Google Scholar 

  14. De Felice FG (2013) Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123:531–539

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pennica D, Arce V, Swanson TA, Vejsada R, Pollock RA, Armanini M, Dudley K, Phillips HS, Rosenthal A, Kato AC et al (1996) Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17:63–74

    Article  CAS  PubMed  Google Scholar 

  16. Sheng Z, Pennica D, Wood WI, Chien KR (1996) Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival. Development 122:419–428

    CAS  PubMed  Google Scholar 

  17. Bordet T, Lesbordes JC, Rouhani S, Castelnau-Ptakhine L, Schmalbruch H, Haase G, Kahn A (2001) Protective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice. Hum Mol Genet 10:1925–1933

    Article  CAS  PubMed  Google Scholar 

  18. Bordet T, Schmalbruch H, Pettmann B, Hagege A, Castelnau-Ptakhine L, Kahn A, Haase G (1999) Adenoviral cardiotrophin-1 gene transfer protects pmn mice from progressive motor neuronopathy. J Clin Invest 104:1077–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lesbordes JC, Bordet T, Haase G, Castelnau-Ptakhine L, Rouhani S, Gilgenkrantz H, Kahn A (2002) In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum Mol Genet 11:1615–1625

    Article  CAS  PubMed  Google Scholar 

  20. Lesbordes JC, Cifuentes-Diaz C, Miroglio A, Joshi V, Bordet T, Kahn A, Melki J (2003) Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy. Hum Mol Genet 12:1233–1239

    Article  CAS  PubMed  Google Scholar 

  21. Zhang ZF, Liao WH, Yang QF, Li HY, Wu YM, Zhou XF (2003) Protective effects of adenoviral cardiotrophin-1 gene transfer on rubrospinal neurons after spinal cord injury in adult rats. Neurotox Res 5:539–548

    Article  PubMed  Google Scholar 

  22. Gard AL, Gavin E, Solodushko V, Pennica D (2004) Cardiotrophin-1 in choroid plexus and the cerebrospinal fluid circulatory system. Neuroscience 127:43–52

    Article  CAS  PubMed  Google Scholar 

  23. Zvonic S, Hogan JC, Arbour-Reily P, Mynatt RL, Stephens JM (2004) Effects of cardiotrophin on adipocytes. J Biol Chem 279:47572–47579

    Article  CAS  PubMed  Google Scholar 

  24. Asrih M, Gardier S, Papageorgiou I, Montessuit C (2013) Dual effect of the heart-targeting cytokine cardiotrophin-1 on glucose transport in cardiomyocytes. J Mol Cell Cardiol 56:106–115

    Article  CAS  PubMed  Google Scholar 

  25. Moreno-Aliaga MJ, Perez-Echarri N, Marcos-Gomez B, Larequi E, Gil-Bea FJ, Viollet B, Gimenez I, Martinez JA, Prieto J, Bustos M (2011) Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab 14:242–253

    Article  CAS  PubMed  Google Scholar 

  26. Natal C, Fortuno MA, Restituto P, Bazan A, Colina I, Diez J, Varo N (2008) Cardiotrophin-1 is expressed in adipose tissue and upregulated in the metabolic syndrome. Am J Physiol Endocrinol Metab 294:E52–E60

    Article  CAS  PubMed  Google Scholar 

  27. Castano D, Larequi E, Belza I, Astudillo AM, Martinez-Anso E, Balsinde J, Argemi J, Aragon T, Moreno-Aliaga MJ, Muntane J et al (2014) Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. J Hepatol 60:1017–1025

    Article  CAS  PubMed  Google Scholar 

  28. Rezende LF, Santos GJ, Santos-Silva JC, Carneiro EM, Boschero AC (2012) Ciliary neurotrophic factor (CNTF) protects non-obese Swiss mice against type 2 diabetes by increasing beta cell mass and reducing insulin clearance. Diabetologia 55:1495–1504

    Article  CAS  PubMed  Google Scholar 

  29. Rezende LF, Santos GJ, Carneiro EM, Boschero AC (2012) Ciliary neurotrophic factor protects mice against streptozotocin-induced type 1 diabetes through SOCS3: the role of STAT1/STAT3 ratio in beta-cell death. J Biol Chem 287:41628–41639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wang D, Li X, Gao K, Lu D, Zhang X, Ma C, Ye F, Zhang L (2013) Cardiotrophin-1 (CTF1) ameliorates glucose-uptake defects and improves memory and learning deficits in a transgenic mouse model of Alzheimer’s disease. Pharmacol Biochem Behav 107:48–57

    Article  CAS  PubMed  Google Scholar 

  31. Peng H, Sola A, Moore J, Wen T (2010) Caspase inhibition by cardiotrophin-1 prevents neuronal death in vivo and in vitro. J Neurosci Res 88:1041–1051

    CAS  PubMed  Google Scholar 

  32. Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1:1306–1311

    Article  PubMed  Google Scholar 

  33. Takamura A, Okamoto Y, Kawarabayashi T, Yokoseki T, Shibata M, Mouri A, Nabeshima T, Sun H, Abe K, Urisu T et al (2011) Extracellular and intraneuronal HMW-AbetaOs represent a molecular basis of memory loss in Alzheimer’s disease model mouse. Mol Neurodegener 6:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Laczo J, Vlcek K, Vyhnalek M, Vajnerova O, Ort M, Holmerova I, Tolar M, Andel R, Bojar M, Hort J (2009) Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav Brain Res 202:252–259

    Article  PubMed  Google Scholar 

  35. Liang KC, Hon W, Tyan YM, Liao WL (1994) Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation and retrieval of spatial memory in the Morris water maze. Chin J Physiol 37:201–212

    CAS  PubMed  Google Scholar 

  36. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  CAS  PubMed  Google Scholar 

  37. De Felice FG, Ferreira ST (2014) Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63:2262–2272

    Article  PubMed  Google Scholar 

  38. Spielman LJ, Little JP, Klegeris A (2014) Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol 273:8–21

    Article  CAS  PubMed  Google Scholar 

  39. Arnold SE, Lucki I, Brookshire BR, Carlson GC, Browne CA, Kazi H, Bang S, Choi BR, Chen Y, McMullen MF et al (2014) High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol Dis 67:79–87

    Article  CAS  PubMed  Google Scholar 

  40. Bhat NR, Thirumangalakudi L (2013) Increased tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J Alzheimers Dis 36:781–789

    CAS  PubMed  Google Scholar 

  41. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 106:1971–1976

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388:686–690

    Article  CAS  PubMed  Google Scholar 

  43. Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV (2001) Insulin promotes rapid delivery of N-methyl-d-aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci USA 98:3561–3566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Christie JM, Wenthold RJ, Monaghan DT (1999) Insulin causes a transient tyrosine phosphorylation of NR2A and NR2B NMDA receptor subunits in rat hippocampus. J Neurochem 72:1523–1528

    Article  CAS  PubMed  Google Scholar 

  45. Huang CC, Lee CC, Hsu KS (2004) An investigation into signal transduction mechanisms involved in insulin-induced long-term depression in the CA1 region of the hippocampus. J Neurochem 89:217–231

    Article  CAS  PubMed  Google Scholar 

  46. Wang YT, Linden DJ (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25:635–647

    Article  CAS  PubMed  Google Scholar 

  47. van der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GM (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94:1158–1166

    Article  PubMed  Google Scholar 

  48. Chiu SL, Chen CM, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58:708–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872

    Article  CAS  PubMed  Google Scholar 

  50. Benedict C, Hallschmid M, Schultes B, Born J, Kern W (2007) Intranasal insulin to improve memory function in humans. Neuroendocrinology 86:136–142

    Article  CAS  PubMed  Google Scholar 

  51. Kleinridders A, Ferris HA, Cai W, Kahn CR (2014) Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63:2232–2243

    Article  PubMed  Google Scholar 

  52. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    Article  CAS  PubMed  Google Scholar 

  53. McNeilly AD, Williamson R, Sutherland C, Balfour DJ, Stewart CA (2011) High fat feeding promotes simultaneous decline in insulin sensitivity and cognitive performance in a delayed matching and non-matching to position task. Behav Brain Res 217:134–141

    Article  CAS  PubMed  Google Scholar 

  54. Kuwahara K, Saito Y, Kishimoto I, Miyamoto Y, Harada M, Ogawa E, Hamanaka I, Kajiyama N, Takahashi N, Izumi T et al (2000) Cardiotrophin-1 phosphorylates AKT and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol 32:1385–1394

    Article  CAS  PubMed  Google Scholar 

  55. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68:51–57

    Article  PubMed Central  PubMed  Google Scholar 

  56. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69:29–38

    Article  PubMed Central  PubMed  Google Scholar 

  57. Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 91:409–414

    Article  CAS  PubMed  Google Scholar 

  58. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) PPARgamma agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 153:329–338

    Article  CAS  PubMed  Google Scholar 

  59. Benigni F, Sacco S, Pennica D, Ghezzi P (1996) Cardiotrophin-1 inhibits tumor necrosis factor production in the heart and serum of lipopolysaccharide-treated mice and in vitro in mouse blood cells. Am J Pathol 149:1847–1850

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Garcia-Cenador MB, Lorenzo-Gomez MF, Herrero-Payo JJ, Ruiz J, Perez de Obanos MP, Pascual J, Lopez-Novoa JM, Garcia-Criado FJ (2013) Cardiotrophin-1 administration protects from ischemia–reperfusion renal injury and inflammation. Transplantation 96:1034–1042

    Article  CAS  PubMed  Google Scholar 

  61. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668

    Article  CAS  PubMed  Google Scholar 

  62. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751

    CAS  PubMed  Google Scholar 

  63. Lee CC, Huang CC, Wu MY, Hsu KS (2005) Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J Biol Chem 280:18543–18550

    Article  CAS  PubMed  Google Scholar 

  64. Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51:92–104

    Article  CAS  PubMed  Google Scholar 

  65. Joshi MC, Kumar K, Kumar V (2014) Potent phosphatidylinositol 3-kinase inhibitors and their biology. Curr Drug Discov Technol 11:113–126

    Article  CAS  PubMed  Google Scholar 

  66. Kojima N, Shirao T (2007) Synaptic dysfunction and disruption of postsynaptic drebrin–actin complex: a study of neurological disorders accompanied by cognitive deficits. Neurosci Res 58:1–5

    Article  CAS  PubMed  Google Scholar 

  67. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    Article  CAS  PubMed  Google Scholar 

  68. Minokoshi Y, Shiuchi T, Lee S, Suzuki A, Okamoto S (2008) Role of hypothalamic AMP-kinase in food intake regulation. Nutrition 24:786–790

    Article  CAS  PubMed  Google Scholar 

  69. Lage R, Dieguez C, Vidal-Puig A, Lopez M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549

    Article  CAS  PubMed  Google Scholar 

  70. Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R et al (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16:1001–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by National Natural Science Foundation of China (U1304806 and U1304809) and the Scientific Research Fund of Henan University of Science and Technology (No. 09001664).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2015_1535_MOESM1_ESM.tif

Supplementary material Fig. S1 effects of CT-1 on food intake in HFD-induced obese mice. Food intake of mice on a control diet (CD), treated with CT-1 per se (CDC), high-fat diet (HFD), high-fat diet and treated with CT-1 (HFDC) prior to CT-1 treatment (A) and during CT-1 treatment (B) were measured. All data are presented as mean ± S.E.M. (n = 10, # p<0.05 vs. HFD mice). (TIFF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, L., Yan, J. et al. Cardiotrophin-1 (CT-1) Improves High Fat Diet-Induced Cognitive Deficits in Mice. Neurochem Res 40, 843–853 (2015). https://doi.org/10.1007/s11064-015-1535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1535-z

Keywords

Navigation