Skip to main content
Log in

Arsenate Stimulates Glutathione Export from Viable Cultured Rat Cerebellar Granule Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Arsenate is an environmental pollutant which contaminates the drinking water of millions of people worldwide. Numerous in vitro studies have investigated the toxicity of arsenate for a large number of different cell types. However, despite the known neurotoxic potential of arsenicals, little is known so far about the consequences of an exposure of neurons to arsenate. To investigate acute effects of arsenate on the viability and the glutathione (GSH) metabolism of neurons, we have exposed primary rat cerebellar granule neuron cultures to arsenate. Incubation of neurons for up to 6 h with arsenate in concentrations of up to 10 mM did not acutely compromise the cell viability, although the cells accumulated substantial amounts of arsenate. However, exposure to arsenate caused a time- and concentration-dependent increase in the export of GSH from viable neurons with significant effects observed for arsenate in concentrations above 0.3 mM. The arsenate-induced stimulation of GSH export was abolished upon removal of arsenate and completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. These results demonstrate that arsenate is not acutely toxic to neurons but can affect the neuronal GSH metabolism by stimulating GSH export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yadav IC, Singh S, Devi NL, Mohan D, Pahari M, Tater PS, Shakya BM (2012) Spatial distribution of arsenic in groundwater of southern Nepal. Rev Environ Contam Toxicol 218:125–140

    CAS  PubMed  Google Scholar 

  2. Phuong NM, Kang Y, Sakurai K, Sugihara M, Kien CN, Bang ND, Ngoc HM (2012) Arsenic contamination in groundwater and its possible sources in Hanam, Vietnam. Environ Monit Assess 184(7):4501–4515

    Article  PubMed  Google Scholar 

  3. Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341(6148):866–868

    Article  CAS  PubMed  Google Scholar 

  4. George CM, Smith AH, Kalman DA, Steinmaus CM (2006) Reverse osmosis filter use and high arsenic levels in private well water. Arch Environ Occup Health 61(4):171–175

    Article  CAS  PubMed  Google Scholar 

  5. Jovanovic D, Rasic-Milutinovic Z, Paunovic K, Jakovljevic B, Plavsic S, Milosevic J (2013) Low levels of arsenic in drinking water and type 2 diabetes in Middle Banat region, Serbia. Int J Hyg Environ Health 216(1):50–55

    Article  CAS  PubMed  Google Scholar 

  6. Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity: a review. Hum Exp Toxicol 26(10):823–832

    Article  CAS  PubMed  Google Scholar 

  7. Hall AH (2002) Chronic arsenic poisoning. Toxicol Lett 128(1–3):69–72

    Article  CAS  PubMed  Google Scholar 

  8. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, Loiacono NJ, Levy D, Cheng Z, Graziano JH (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115(2):285–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, LoIacono NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112(13):1329–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kritharis A, Bradley TP, Budman DR (2013) The evolving use of arsenic in pharmacotherapy of malignant disease. Ann Hematol 92(6):719–730

    Article  CAS  PubMed  Google Scholar 

  12. Sanz MA, Iacoboni G, Montesinos P (2013) Acute promyelocytic leukemia: do we have a new front-line standard of treatment? Curr Oncol Rep 15(5):445–449

    Article  CAS  PubMed  Google Scholar 

  13. Villa-Bellosta R, Sorribas V (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol Appl Pharmacol 247(1):36–40

    Article  CAS  PubMed  Google Scholar 

  14. Koehler Y, Dringen R (2013) Characterization of arsenate uptake by cultured primary rat astrocytes. Neurochem Res 38(9):1785–1790

    Article  CAS  PubMed  Google Scholar 

  15. Villa-Bellosta R, Sorribas V (2008) Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol 232(1):125–134

    Article  CAS  PubMed  Google Scholar 

  16. Carter DE, Aposhian HV, Gandolfi AJ (2003) The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review. Toxicol Appl Pharmacol 193(3):309–334

    Article  CAS  PubMed  Google Scholar 

  17. Leslie EM (2012) Arsenic-glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem 108:141–149

    Article  CAS  PubMed  Google Scholar 

  18. Chowdhury UK, Zakharyan RA, Hernandez A, Avram MD, Kopplin MJ, Aposhian HV (2006) Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216(3):446–457

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe T, Hirano S (2013) Metabolism of arsenic and its toxicological relevance. Arch Toxicol 87(6):969–979

    Article  CAS  PubMed  Google Scholar 

  20. Juarez-Reyes A, Jimenez-Capdeville ME, Delgado JM, Ortiz-Perez D (2009) Time course of arsenic species in the brain and liver of mice after oral administration of arsenate. Arch Toxicol 83(6):557–563

    Article  CAS  PubMed  Google Scholar 

  21. Chattopadhyay S, Bhaumik S, Purkayastha M, Basu S, Nag Chaudhuri A, Das Gupta S (2002) Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicol Lett 136(1):65–76

    Article  CAS  PubMed  Google Scholar 

  22. Teng YC, Tai YI, Lee YH, Lin AM (2013) Role of HO-1 in the arsenite-induced neurotoxicity in primary cultured cortical neurons. Mol Neurobiol 48(2):281–287

    Article  CAS  PubMed  Google Scholar 

  23. Cai S, Horne DW (2003) Transport of 5-formyltetrahydrofolate into primary cultured cerebellar granule cells. Brain Res 962(1–2):151–158

    Article  CAS  PubMed  Google Scholar 

  24. Maekawa F, Tsuboi T, Oya M, Aung KH, Tsukahara S, Pellerin L, Nohara K (2013) Effects of sodium arsenite on neurite outgrowth and glutamate AMPA receptor expression in mouse cortical neurons. Neurotoxicology 37:197–206

    Article  CAS  PubMed  Google Scholar 

  25. DeFuria J, Shea TB (2007) Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: roles of JNK and GSK-3β. Brain Res 1181:74–82

    Article  CAS  PubMed  Google Scholar 

  26. Zhou J, Meng R, Sui X, Li W, Yang B (2006) Various tolerances to arsenic trioxide between human cortical neurons and leukemic cells. Sci China C Life Sci 49(6):567–572

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Gao Y, Yao H, Zhou L, Sun D, Wang J (2013) Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol Trace Elem Res 155(3):439–446

    Article  CAS  PubMed  Google Scholar 

  28. Lowenstein DH, Chan PH, Miles MF (1991) The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron 7(6):1053–1060

    Article  CAS  PubMed  Google Scholar 

  29. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174(2):130–138

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Gao Y, Yao H, Zhou L, Pei J, Sun L, Wang J, Sun D (2014) p38 and extracellular signal-regulated kinases activations have opposite effects on primary-cultured rat cerebellar granule neurons exposed to sodium arsenite. J Biochem Mol Toxicol 28(4):143–148

    Article  CAS  PubMed  Google Scholar 

  31. Meyer N, Koehler Y, Tulpule K, Dringen R (2013) Arsenate accumulation and arsenate-induced glutathione export in astrocyte-rich primary cultures. Neurochem Int 62(7):1012–1019

    Article  CAS  PubMed  Google Scholar 

  32. Tulpule K, Hohnholt MC, Dringen R (2013) Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J Neurochem 125(2):260–272

    Article  CAS  Google Scholar 

  33. Hohnholt MC, Dringen R (2014) Short time exposure to hydrogen peroxide induces sustained glutathione export from cultured neurons. Free Radic Biol Med 70:33–44

    Article  CAS  PubMed  Google Scholar 

  34. Tulpule K, Hohnholt M, Hirrlinger J, Dringen R (2014) Primary cultures of astrocytes and neurons as model systems to study the metabolism and metabolite export from brain cells. In: Hirrlinger JWH (ed) Neuromethods: brain energy metabolism. Springer, New York, pp 45–72

    Chapter  Google Scholar 

  35. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Brain Res Protoc 2(3):223–228

    Article  CAS  PubMed  Google Scholar 

  36. Hohnholt MC, Blumrich EM, Dringen R (2014) Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. J Neurosci Res (in press)

  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  38. Hirrlinger J, Dringen R (2005) Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Meth Enzymol 400:395–409

    Article  CAS  PubMed  Google Scholar 

  39. Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97(2):373–384

    Article  CAS  PubMed  Google Scholar 

  40. Koehler Y, Luther EM, Meyer S, Schwerdtle T, Dringen R (2014) Uptake and toxicity of arsenite and arsenate in cultured brain astrocytes. J Trace Elem Med Biol 28(3):328–337

    Article  CAS  PubMed  Google Scholar 

  41. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48(17):4827–4833

    CAS  PubMed  Google Scholar 

  42. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303(2):474–482

    Article  CAS  PubMed  Google Scholar 

  43. Shahid F, Rizwan S, Khan MW, Khan SA, Naqshbandi A, Yusufi AN (2014) Studies on the effect of sodium arsenate on the enzymes of carbohydrate metabolism, brush border membrane, and oxidative stress in the rat kidney. Environ Toxicol Pharmacol 37(2):592–599

    Article  CAS  PubMed  Google Scholar 

  44. Repetto G, Sanz P, Repetto M (1994) Comparative in vitro effects of sodium arsenite and sodium arsenate on neuroblastoma cells. Toxicology 92(1–3):143–153

    Article  CAS  PubMed  Google Scholar 

  45. Hu Y, Su L, Snow ET (1998) Arsenic toxicity is enzyme specific and its affects on ligation are not caused by the direct inhibition of DNA repair enzymes. Mutat Res 408(3):203–218

    Article  CAS  PubMed  Google Scholar 

  46. Kharroubi W, Dhibi M, Haouas Z, Chreif I, Neffati F, Hammami M, Sakly R (2014) Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats. Environ Sci Pollut Res Int 21(3):1648–1657

    Article  CAS  PubMed  Google Scholar 

  47. Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21 (22):RC181

  48. Inden M, Iriyama M, Takagi M, Kaneko M, Hozumi I (2013) Localization of type-III sodium-dependent phosphate transporter 2 in the mouse brain. Brain Res 1531:75–83

    Article  CAS  PubMed  Google Scholar 

  49. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69(3):318–326

    Article  CAS  PubMed  Google Scholar 

  50. Thomas DJ (2007) Molecular processes in cellular arsenic metabolism. Toxicol Appl Pharmacol 222(3):365–373

    Article  CAS  PubMed  Google Scholar 

  51. Yildiz D, Cakir Y (2012) Arsenate V induced glutathione efflux from human erythrocytes. J Trace Elem Med Biol 26(1):53–58

    Article  CAS  PubMed  Google Scholar 

  52. Brandmann M, Hohnholt MC, Petters C, Dringen R (2014) Antiretroviral protease inhibitors accelerate glutathione export from viable cultured rat neurons. Neurochem Res 39(5):883–892

    Article  CAS  PubMed  Google Scholar 

  53. Gennuso F, Fernetti C, Tirolo C, Testa N, L’Episcopo F, Caniglia S, Morale MC, Ostrow JD, Pascolo L, Tiribelli C, Marchetti B (2004) Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proc Natl Acad Sci USA 101(8):2470–2475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. McDermott JR, Jiang X, Beene LC, Rosen BP, Liu Z (2010) Pentavalent methylated arsenicals are substrates of human AQP9. Biometals 23(1):119–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Badaut J, Petit JM, Brunet JF, Magistretti PJ, Charriaut-Marlangue C, Regli L (2004) Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience 128(1):27–38

    Article  CAS  PubMed  Google Scholar 

  56. Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13(3):3527–3548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73(3):889–902

    Article  CAS  PubMed  Google Scholar 

  58. Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A (2002) Glutathione catabolism as a signaling mechanism. Biochem Pharmacol 64(5–6):1027–1035

    Article  CAS  PubMed  Google Scholar 

  59. Oja SS, Janaky R, Varga V, Saransaari P (2000) Modulation of glutamate receptor functions by glutathione. Neurochem Int 37(2–3):299–306

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Zhao F, Jin Y, Zhong Y, Yu X, Li G, Lv X, Sun G (2011) Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water. Arch Toxicol 85(3):177–184

    Article  CAS  PubMed  Google Scholar 

  61. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671

    Article  CAS  PubMed  Google Scholar 

  62. Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14(10):21021–21044

    Article  PubMed Central  PubMed  Google Scholar 

  63. Dringen R, Brandmann M, Hohnholt MC, Blumrich EM (2014) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res. doi:10.1007/s11064-014-1481-1

  64. O’Bryant SE, Edwards M, Menon CV, Gong G, Barber R (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8(3):861–874

    Article  PubMed Central  PubMed  Google Scholar 

  65. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Michaela C. Hohnholt would like to thank the “Forschungsförderung” of the University of Bremen for financial support. The authors would also like to acknowledge Irina Keberlein for technical support.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela C. Hohnholt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohnholt, M.C., Blumrich, EM., Koehler, Y. et al. Arsenate Stimulates Glutathione Export from Viable Cultured Rat Cerebellar Granule Neurons. Neurochem Res 40, 561–571 (2015). https://doi.org/10.1007/s11064-014-1501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1501-1

Keywords

Navigation