Skip to main content
Log in

Role of HO-1 in the Arsenite-Induced Neurotoxicity in Primary Cultured Cortical Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the present study, the role of heme oxygenase (HO)-1 in sodium arsenite (arsenite)-induced neurotoxicity was investigated using primary cultured cortical neurons. Incubation with arsenite was found to cause cell death of primary cultured cortical neurons in concentration- and time-dependent manners. Furthermore, arsenite induced caspase 3 activation and decreased procaspase 12 levels, indicating that apoptosis is involved in the arsenite-induced neurotoxicity. The oxidative mechanism underlying arsenite-induced neurotoxicity was investigated. Western blot assay showed that arsenite significantly increased HO-1 levels, a redox-regulated protein. Co-incubation with glutathione (10 mM) attenuated arsenite-induced HO-1 elevation and caspase 3 activation, suggesting that oxidative stress is involved in the arsenite-induced neurotoxicity. The neurotoxic effects of inorganic arsenics were compared; arsenite was more potent than arsenate in inducing HO-1 expression and caspase 3 activation. Moreover, the cell viabilities of arsenite and arsenate were 60 ± 2 and 99 ± 2 % of control, respectively. HO-1 siRNA transfection was employed to prevent arsenite-induced HO-1 elevation. At the same time, arsenite-induced caspase 3 activation and neuronal death were attenuated in the HO-1 siRNA-transfected cells. Taken together, HO-1 appears to be neuroprotective in the arsenite-induced neurotoxicity in primary cultured cortical neurons. In addition to antioxidants, HO-1 elevation may be a neuroprotective strategy for arsenite-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hall AH (2002) Chronic arsenic poisoning. Toxicol Lett 128:69–72

    Article  PubMed  CAS  Google Scholar 

  2. Bolla-Wilson K, Bleecker ML (1987) Neuropsychological impairment following inorganic arsenic exposure. J Occup Med 29:500–503

    PubMed  CAS  Google Scholar 

  3. Rodriguez VM, Jimenez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145:1–18

    Article  PubMed  CAS  Google Scholar 

  4. Frank G (1976) Neurological and psychological disorders following acute arsenic poisoning. J Neurol 213:59–70

    Article  PubMed  CAS  Google Scholar 

  5. Itoh T, Zhang YF, Murai S, Saito H, Nagahama H, Miyate H, Saito Y, Abe E (1990) The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice. Toxicol Lett 54:345–353

    Article  PubMed  CAS  Google Scholar 

  6. Zhang YF, Murai S, Saito H, Nagahama H, Miyate H, Saito Y, Abe E (1990) The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice. Toxicol Lett 54:345–353

    Article  PubMed  Google Scholar 

  7. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360

    PubMed  CAS  Google Scholar 

  8. Bernstam L, Nriagu J (2000) Molecular aspects of arsenic stress. J Toxicol Environ Health 3:293–322

    Article  CAS  Google Scholar 

  9. Flora SJ (1999) Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol 11:865–869

    Article  Google Scholar 

  10. Choi YJ, Park JW, Suh SI, Mun KC, Bae JH, Song DK, Kim SP, Kwon TK (2002) Arsenic trioxide induced apoptosis in U937 cells involve generation of reactive oxygen species inhibition of Akt. Intl J Oncol 21:603–610

    CAS  Google Scholar 

  11. Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement o reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177:324–333

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-Chavez E, Santamaria A, Diaz-Barriga F, Mandeville P, Juarez BI, Jimenez-Capdeville ME (2003) Arsenite-induced formation of hydroxyl radical in the striatum of awake rats. Brain Res 976:82–89

    Article  PubMed  CAS  Google Scholar 

  13. Bau DT, Wang TS, Chung CH, Wang ASS, Jan KY (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110:753–756

    Article  PubMed  CAS  Google Scholar 

  14. Bashir S, Sharma Y, Irshad M, Gupta SD, Dogra TD (2006) Arsenic-induced cell death in liver and brain of experimental rats. Basic Clin Pharmacol Toxicol 98:38–43

    Article  PubMed  CAS  Google Scholar 

  15. Chattopadhyay S, Bhaumik S, Purkarastha M, Basy S, Chaydhuri AN, Gupta SDA (2002) Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicol Lett 136:665–676

    Article  Google Scholar 

  16. Namgung U, Xia Z (2001) Arsenic induced apoptosis in rat cerebellar neurons via activation of JNK3 and p38MAP kinases. Toxicol Applied Pharmacol 174:130–138

    Article  CAS  Google Scholar 

  17. Lin AMY, Chao PL, Fang SF, Chi CW, Yang CH (2007) Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain. Toxicol Appl Pharmacol 224:138–146

    Article  PubMed  CAS  Google Scholar 

  18. Lin AMY, Fang SF, Chao PL, Yang CH (2007) Melatonin attenuates arsenite-induced apoptosis in rat brain: involvement of mitochondrial and ER pathways and aggregation of α-synuclein. J Pineal Res 43:163–171

    Article  PubMed  CAS  Google Scholar 

  19. Chao PL, Fan SF, Chou YH, Lin AMY (2007) N-acetylcysteine attenuates arsenite-induced oxidative injury in DRG explants. Ann NY Acad Sci 1122:276–288

    Article  PubMed  CAS  Google Scholar 

  20. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110:469–485

    Article  PubMed  CAS  Google Scholar 

  21. Kitchin KT, Del Razo LM, Brown JL, Anderson WL, Kenyon EM (1999) An integrated pharmacokinetic and pharmacodynamic study of arsenite action. 1. Heme oxygenase induction in rats. Teratog Carcinog Mutagen 19:385–402

    Article  PubMed  CAS  Google Scholar 

  22. Shen SC, Yang LY, Lin HY, Wu CY, Su TH, Chen YC (2008) Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As(+3)- and MMA(+3)-induced apoptosis through inhibition of telomerase activity via JNK activation. Toxicol Appl Pharmacol 229:239–251

    Article  PubMed  CAS  Google Scholar 

  23. Chou YH, Chao PL, Tsai MJ, Cheng HH, Chen KB, Yang DM, Yang CH, Lin AMY (2008) Arsenite-induced cytotoxicity in DRG explants. Free Radic Biol Med 44:1553–1561

    Article  PubMed  CAS  Google Scholar 

  24. Schipper HM, Liberman A, Stopa EG (1998) Neural hemeoxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68

    Article  PubMed  CAS  Google Scholar 

  25. Aztatzi-Santillán E, Nares-López FE, Márquez-Valadez B, Aguilera P, Chánez-Cárdenas ME (2010) The protective role of heme oxygenase-1 in cerebral ischemia. Cent Nerdv Syst Agents Med Chem 10:310–316

    Article  Google Scholar 

  26. Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM (2008) Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 74:1564–1575

    Article  PubMed  CAS  Google Scholar 

  27. Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 44:192–201

    Article  PubMed  CAS  Google Scholar 

  28. Saleem S, Zhuang H, Biswal S, Christen Y, Doré S (2008) Ginkgo biloba extract neuroprotective action is dependent on heme oxygenase 1 in ischemic reperfusion brain injury. Stroke 39:3389–3396

    Article  PubMed  Google Scholar 

  29. Lin CH, Juan SH, Wang CY, Sun YY, Chou CM, Chang SF, Hu SY, Lee WS, Lee YH (2008) Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem 104:1415–1429

    Article  PubMed  CAS  Google Scholar 

  30. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  31. Charoensuk V, Gati WP, Weinfeld M, Le XC (2009) Differential cytotoxic effects of arsenic compounds in human acute promyelocytic leukemia cells. Toxicol Appl Pharmacol 239:64–70

    Article  PubMed  CAS  Google Scholar 

  32. Vega L, Styblo M, Patterson R, Cullen W, Wang C, Germolec D (2001) Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol Appl Pharmacol 172:225–232

    Article  PubMed  CAS  Google Scholar 

  33. Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72:1187–1203

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140

    Article  PubMed  CAS  Google Scholar 

  35. Song W, Patel A, Qureshi HY, Han D, Schipper HM, Paudel HK (2009) The Parkinson disease-associated A30P mutation stabilizes alpha-synuclein against proteasomal degradation triggered by heme oxygenase-1 over-expression in human neuroblastoma cells. J Neurochem 110:719–733

    Article  PubMed  CAS  Google Scholar 

  36. Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR, Singleton AB (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 25:1835–1838

    Article  Google Scholar 

  37. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. C.Y. Chai at Institute of Biomedical Sciences, Academia Sinica and Dr. L.S. Kao, Dean of School of Life Sciences, National Yang-Ming University, for their encouragement and support. This study was supported by NSC101-2320-B-010-044, VGHTPE-V102C-011, and a grant from the Ministry of Education, Aim for the Top University Plan, Taipei, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Y. Lin.

Additional information

Y.C. Teng and Y.I. Tai shared equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Y.C., Tai, Y.I., Lee, Y.H. et al. Role of HO-1 in the Arsenite-Induced Neurotoxicity in Primary Cultured Cortical Neurons. Mol Neurobiol 48, 281–287 (2013). https://doi.org/10.1007/s12035-013-8492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8492-9

Keywords

Navigation