Skip to main content
Log in

Biochemical Characterization of Sirtuin 6 in the Brain and Its Involvement in Oxidative Stress Response

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sirtuin 6 (SIRT6) is a member of nicotinamide adenine dinucleotide-dependent deacetylase protein family and has been implicated in the control of glucose and lipid metabolism, cancer, genomic stability and DNA repair. Moreover, SIRT6 regulates the expression of a large number of genes involved in stress response and aging. The role of SIRT6 in brain function and neuronal survival is largely unknown. Here, we biochemically characterized SIRT6 in brain tissues and primary neuronal cultures and found that it is highly expressed in cortical and hippocampal regions and enriched in the synaptosomal membrane fraction. Immunoblotting analysis on cortical and hippocampal neurons showed that SIRT6 is downregulated during maturation in vitro, reaching the lowest expression at 11 days in vitro. In addition, SIRT6 overexpression in terminally differentiated cortical and hippocampal neurons, mediated by a neuron-specific recombinant adeno-associated virus, downregulated cell viability under oxidative stress condition. By contrast, under control condition, SIRT6 overexpression had no detrimental effect. Overall these results suggest that SIRT6 may play a role in synaptic function and neuronal maturation and it may be implicated in the regulation of neuronal survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    CAS  PubMed  Google Scholar 

  2. Cosentino C, Mostoslavsky R (2013) Metabolism, longevity and epigenetics. Cell Mol Life Sci 70(9):1525–1541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 8(1):e54514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bosch-Presegué L, Vaquero A (2014) Sirtuins in stress response: guardians of the genome. Oncogene 33(29):3764–3775

  6. Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, Qu Y, Zhang S (2013) Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Mol Neurobiol 48(3):490–499

    Article  CAS  PubMed  Google Scholar 

  7. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y (2008) Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 105(40):15599–15604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Codocedo JF, Allard C, Godoy JA, Varela-Nallar L, Inestrosa NC (2012) SIRT1 regulates dendritic development in hippocampal neurons. PLoS One 7(10):e47073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30(29):9695–9707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471–483

    Article  CAS  PubMed  Google Scholar 

  12. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 95(3):373–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet 17(23):3767–3775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837):516–519

    Article  CAS  PubMed  Google Scholar 

  15. Luthi-Carter R, Taylor DM, Pallos J, Lambert E, Amore A, Parker A, Moffitt H, Smith DL, Runne H, Gokce O, Kuhn A, Xiang Z, Maxwell MM, Reeves SA, Bates GP, Neri C, Thompson LM, Marsh JL, Kazantsev AG (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci USA 107(17):7927–7932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, Gao B, Deng CX (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 12(3):224–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136(1):62–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kawahara TL, Rapicavoli NA, Wu AR, Qu K, Quake SR, Chang HY (2011) Dynamic chromatin localization of Sirt6 shapes stress- and aging-related transcriptional networks. PLoS Genet 7(6):e1002153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Grimley R, Polyakova O, Vamathevan J, McKenary J, Hayes B, Patel C, Smith J, Bridges A, Fosberry A, Bhardwaja A, Mouzon B, Chung CW, Barrett N, Richmond N, Modha S, Solari R (2012) Over expression of wild type or a catalytically dead mutant of Sirtuin 6 does not influence NFkappaB responses. PLoS One 7(7):e39847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329

    Article  CAS  PubMed  Google Scholar 

  22. Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N, Cohen HY (2010) SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9(2):162–173

    Article  CAS  PubMed  Google Scholar 

  23. Tao R, Xiong X, DePinho RA, Deng CX, Dong XC (2013) FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J Biol Chem 288(41):29252–29259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee HS, Ka SO, Lee SM, Lee SI, Park JW, Park BH (2013) Overexpression of sirtuin 6 suppresses inflammatory responses and bone destruction in mice with collagen-induced arthritis. Arthritis Rheum 65(7):1776–1785

    Article  CAS  PubMed  Google Scholar 

  25. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221

    Article  CAS  PubMed  Google Scholar 

  26. Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R (2012) From sirtuin biology to human diseases: an update. J Biol Chem 287(51):42444–42452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Van Meter M, Mao Z, Gorbunova V, Seluanov A (2011) SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10(18):3153–3158

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lombard DB, Schwer B, Alt FW, Mostoslavsky R (2008) SIRT6 in DNA repair, metabolism and ageing. J Intern Med 263(2):128–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329(5997):1348–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1(1):109–121

    CAS  Google Scholar 

  31. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332(6036):1443–1446

    Article  CAS  PubMed  Google Scholar 

  32. Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280(22):21313–21320

    Article  CAS  PubMed  Google Scholar 

  33. Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, Schneider JI, Chai H, Bronson RT, Tsai LH, Deng CX, Alt FW (2010) Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 107(50):21790–21794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W (2013) Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem 125(3):410–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lee OH, Kim J, Kim JM, Lee H, Kim EH, Bae SK, Choi Y, Nam HS, Heo JH (2013) Decreased expression of sirtuin 6 is associated with release of high mobility group box-1 after cerebral ischemia. Biochem Biophys Res Commun 438(2):388–394

    Article  CAS  PubMed  Google Scholar 

  36. Pfister JA, Ma C, Morrison BE, D’Mello SR (2008) Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One 3(12):e4090

    Article  PubMed Central  PubMed  Google Scholar 

  37. Fassio A, Merlo D, Mapelli J, Menegon A, Corradi A, Mete M, Zappettini S, Bonanno G, Valtorta F, D’Angelo E, Benfenati F (2006) The synapsin domain E accelerates the exoendocytotic cycle of synaptic vesicles in cerebellar Purkinje cells. J Cell Sci 119(Pt 20):4257–4268

    Article  CAS  PubMed  Google Scholar 

  38. Zhang SJ, Steijaert MN, Lau D, Schutz G, Delucinge-Vivier C, Descombes P, Bading H (2007) Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53(4):549–562

    Article  CAS  PubMed  Google Scholar 

  39. Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, Aso Y, Descombes P, Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8):e1000604

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lau D, Bading H (2009) Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci 29(14):4420–4429

    Article  CAS  PubMed  Google Scholar 

  41. Ricci-Vitiani L, Mollinari C, di Martino S, Biffoni M, Pilozzi E, Pagliuca A, de Stefano MC, Circo R, Merlo D, De Maria R, Garaci E (2010) Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells. FASEB J 24(11):4291–4301

    Article  CAS  PubMed  Google Scholar 

  42. Klugmann M, Symes CW, Leichtlein CB, Klaussner BK, Dunning J, Fong D, Young D, During MJ (2005) AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol Cell Neurosci 28(2):347–360

    Article  CAS  PubMed  Google Scholar 

  43. Merlo D, Mollinari C, Inaba Y, Cardinale A, Rinaldi AM, D’Antuono M, D’Arcangelo G, Tancredi V, Ragsdale D, Avoli M (2007) Reduced GABAB receptor subunit expression and paired-pulse depression in a genetic model of absence seizures. Neurobiol Dis 25(3):631–641

    Article  CAS  PubMed  Google Scholar 

  44. Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21(15):5546–5558

    CAS  PubMed  Google Scholar 

  45. Cardinale A, Racaniello M, Saladini S, De Chiara G, Mollinari C, de Stefano MC, Pocchiari M, Garaci E, Merlo D (2012) Sublethal doses of beta-amyloid peptide abrogate DNA-dependent protein kinase activity. J Biol Chem 287(4):2618–2631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Riccio A (2010) Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat Neurosci 13(11):1330–1337

    Article  CAS  PubMed  Google Scholar 

  48. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8(16):2664–2666

    Article  CAS  PubMed  Google Scholar 

  50. Lesuisse C, Martin LJ (2002) Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol 51(1):9–23

    Article  PubMed  Google Scholar 

  51. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317

    Article  CAS  PubMed  Google Scholar 

  52. Chiang WC, Tishkoff DX, Yang B, Wilson-Grady J, Yu X, Mazer T, Eckersdorff M, Gygi SP, Lombard DB, Hsu AL (2012) C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet 8(9):e1002948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16(8):2553–2562

    CAS  PubMed  Google Scholar 

  54. Mailly F, Marin P, Israel M, Glowinski J, Premont J (1999) Increase in external glutamate and NMDA receptor activation contribute to H2O2-induced neuronal apoptosis. J Neurochem 73(3):1181–1188

    Article  CAS  PubMed  Google Scholar 

  55. Whittemore ER, Loo DT, Cotman CW (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5(12):1485–1488

    Article  CAS  PubMed  Google Scholar 

  56. Beauharnois JM, Bolivar BE, Welch JT (2013) Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol Biosyst 9(7):1789–1806

    Article  CAS  PubMed  Google Scholar 

  57. Favero G, Rezzani R, Rodella LF (2014) Sirtuin 6 nuclear localization at cortical brain level of young diabetic mice: An immunohistochemical study. Acta Histochem 116(1):272–277

  58. Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326(2):409–422

    Article  CAS  PubMed  Google Scholar 

  59. Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267

    Article  CAS  PubMed  Google Scholar 

  60. Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16(1):89–101

    Article  CAS  PubMed  Google Scholar 

  61. Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3(9):857–871

    Article  CAS  PubMed  Google Scholar 

  62. Sugino T, Maruyama M, Tanno M, Kuno A, Houkin K, Horio Y (2010) Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett 584(13):2821–2826

    Article  CAS  PubMed  Google Scholar 

  63. Hsieh J, Gage FH (2005) Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 17(6):664–671

    Article  CAS  PubMed  Google Scholar 

  64. Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM (2009) Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci 29(25):8288–8297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Barzilai A (2007) The contribution of the DNA damage response to neuronal viability. Antioxid Redox Signal 9(2):211–218

    Article  CAS  PubMed  Google Scholar 

  66. Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X, Chen L, Scheuch H, Zheng H, Qin L, Zatloukal K, Hui L, Wagner EF (2012) Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 14(11):1203–1211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hilmar Bading (University of Heidelberg, Germany) for the kind gift of the rAAV system. This work was supported in part by the Italian Ministry of Health and Istituto Superiore di Sanità, Progetto Oncotecnologico.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Merlo.

Additional information

Alessio Cardinale and Maria Chiara de Stefano have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardinale, A., de Stefano, M.C., Mollinari, C. et al. Biochemical Characterization of Sirtuin 6 in the Brain and Its Involvement in Oxidative Stress Response. Neurochem Res 40, 59–69 (2015). https://doi.org/10.1007/s11064-014-1465-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1465-1

Keywords

Navigation