Skip to main content

Advertisement

Log in

Involvement of Neurotransmitters in the Action of the Nociceptin/Orphanin FQ Peptide-Receptor System on Passive Avoidance Learning in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 18 July 2014

Abstract

The nociceptin/orphanin FQ peptide (NOP) receptor and its endogenous ligand plays role in several physiologic functions of the central nervous system, including pain, locomotion, anxiety and depression, reward and drug addiction, learning and memory. Previous studies demonstrated that the NOP-receptor system induces impairment in memory and learning. However, we have little evidence about the underlying neuromodulation. The aim of the present study was to investigate the involvement of distinct neurotransmitters in the action of the selective NOP receptor agonist orphan G protein-coupled receptor (GPCR) SP9155 P550 on memory consolidation in a passive avoidance learning test in rats. Accordingly, rats were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective opioid receptor antagonist, naloxone, a non-specific nitric oxide synthase inhibitor, nitro-l-arginine, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol. Atropine, bicuculline, naloxone and phenoxybenzamine reversed the orphan GPCR SP9155 P550-induced memory impairment, whereas propranolol, haloperidol and nitro-l-arginine were ineffective. Our results suggest that the NOP system-induced impairment of memory consolidation is mediated through muscarinic cholinergic, GABA-A-ergic, opioid and α-adrenergic receptors, whereas β-adrenergic, D2, D3, D4-dopaminergic and nitrergic mechanisms are not be implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Civelli O (2008) The orphanin FQ/nociceptin (OFQ/N) system. Results Probl Cell Differ 46:1–25

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Gandhi PR, Standifer KM (2012) Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain 8:76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Marti M, Viaro R, Guerrini R, Franchi G, Morari M (2009) Nociceptin/orphanin FQ modulates motor behavior and primary motor cortex output through receptors located in substantia nigra reticulata. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34:341–355

    Article  CAS  Google Scholar 

  4. Mallimo EM, Kusnecov AW (2013) The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 7:173

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gavioli EC, Calo G (2013) Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 140:10–25

    Article  CAS  PubMed  Google Scholar 

  6. Vazquez-DeRose J, Stauber G, Khroyan TV, Xie XS, Zaveri NT, Toll L (2013) Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity. Eur J Pharmacol 699:200–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Caputi FF, Di Benedetto M, Carretta D, del Carmen Bastias, Candia S, D’Addario C, Cavina C, Candeletti S, Romualdi P (2014) Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 49:36–46

    Article  CAS  PubMed  Google Scholar 

  8. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L (1997) Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 9:194–197

    Article  CAS  PubMed  Google Scholar 

  9. Nabeshima T, Noda Y, Mamiya T (1999) The role of nociceptin in cognition. Brain Res 848:167–173

    Article  CAS  PubMed  Google Scholar 

  10. Hawes BE, Graziano MP, Lambert DG (2000) Cellular actions of nociceptin: transduction mechanisms. Peptides 21:961–967

    Article  CAS  PubMed  Google Scholar 

  11. New DC, Wong YH (2002) The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals 11:197–212

    Article  CAS  PubMed  Google Scholar 

  12. Darland T, Grandy DK (1998) The orphanin FQ system: an emerging target for the management of pain? Br J Anaesth 81:29–37

    Article  CAS  PubMed  Google Scholar 

  13. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol 412:563–605

    Article  CAS  PubMed  Google Scholar 

  14. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406:503–547

    Article  CAS  PubMed  Google Scholar 

  15. Roozendaal B, Lengvilas R, McGaugh JL, Civelli O, Reinscheid RK (2007) Orphanin FQ/nociceptin interacts with the basolateral amygdala noradrenergic system in memory consolidation. Learn Mem 14:29–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassileva G, Zeng M, Laz TM, Behan J, Qiu P, Wang L, Wang S, Bayne M, Greene J, Monsma F Jr, Zhang FL (2003) Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 278:27652–27657

    Article  CAS  PubMed  Google Scholar 

  17. Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain. Plenum Press, New York

    Google Scholar 

  18. Telegdy G, Adamik A (2002) The action of orexin A on passive avoidance learning. Involvement of transmitters. Regul Pept 104:105–110

    Article  CAS  PubMed  Google Scholar 

  19. Telegdy G, Adamik A (2013) The action of kisspeptin-13 on passive avoidance learning in mice. Involvement of transmitters. Behav Brain Res 243:300–305

    Article  CAS  PubMed  Google Scholar 

  20. Ader R, Weijnen JAWM, Moleman P (1972) Retention of a passive avoidance response as a function of the intensity and duration of electric shock. Psychon Sci 26:125–128

    Article  Google Scholar 

  21. Goda Y, Mutneja M (1998) Memory mechanisms: the nociceptin connection. Curr Biol CB 8:R889–R891

    Article  CAS  Google Scholar 

  22. Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85:1713–1720

    Article  CAS  PubMed  Google Scholar 

  23. Mitsushima D, Sano A, Takahashi T (2013) A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun 4:2760

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ovsepian SV, Anwyl R, Rowan MJ (2004) Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci 20:1267–1275

    Article  PubMed  Google Scholar 

  25. Tarr JC, Turlington ML, Reid PR, Utley TJ, Sheffler DJ, Cho HP, Klar R, Pancani T, Klein MT, Bridges TM, Morrison RD, Blobaum AL, Xiang Z, Daniels JS, Niswender CM, Conn PJ, Wood MR, Lindsley CW (2012) Targeting selective activation of M(1) for the treatment of Alzheimer’s disease: further chemical optimization and pharmacological characterization of the M(1) positive allosteric modulator ML169. ACS Chem Neurosci 3:884–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hiramatsu M, Inoue K (1999) Nociceptin/orphanin FQ and nocistatin on learning and memory impairment induced by scopolamine in mice. Br J Pharmacol 127:655–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hiramatsu M, Miwa M, Hashimoto K, Kawai S, Nomura N (2008) Nociceptin/orphanin FQ reverses mecamylamine-induced learning and memory impairment as well as decrease in hippocampal acetylcholine release in the rat. Brain Res 1195:96–103

    Article  CAS  PubMed  Google Scholar 

  28. Michels L, Martin E, Klaver P, Edden R, Zelaya F, Lythgoe DJ, Luchinger R, Brandeis D, O’Gorman RL (2012) Frontal GABA levels change during working memory. PLoS One 7:e31933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  CAS  PubMed  Google Scholar 

  30. Sardari M, Rezayof A, Khodagholi F, Zarrindast MR (2014) Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol 4:603–612

  31. Uchiyama H, Yamaguchi T, Toda A, Hiranita T, Watanabe S, Eyanagi R (2008) Involvement of the GABA/benzodiazepine receptor in the axiolytic-like effect of nociceptin/orphanin FQ. Eur J Pharmacol 590:185–189

    Article  CAS  PubMed  Google Scholar 

  32. Tajalli S, Jonaidi H, Abbasnejad M, Denbow DM (2006) Interaction between nociceptin/orphanin FQ (N/OFQ) and GABA in response to feeding. Physiol Behav 89:410–413

    Article  CAS  PubMed  Google Scholar 

  33. Gholizadeh S, Sun N, De Jaeger X, Bechard M, Coolen L, Laviolette SR (2013) Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala–prefrontal cortical pathway. PLoS One 8:e63612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Frenois F, Stinus L, Di Blasi F, Cador M, Le Moine C (2005) A specific limbic circuit underlies opiate withdrawal memories. J Neurosci Off J Soc Neurosci 25:1366–1374

    Article  CAS  Google Scholar 

  35. Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR (2011) Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 21:2665–2680

    Article  PubMed  Google Scholar 

  36. Braida D, Gori E, Sala M (1994) Relationship between morphine and etonitazene-induced working memory impairment and analgesia. Eur J Pharmacol 271:497–504

    Article  CAS  PubMed  Google Scholar 

  37. Gear RW, Bogen O, Ferrari LF, Green PG, Levine JD (2014) NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids. Neuroscience 257:139–148

    Article  CAS  PubMed  Google Scholar 

  38. Haggerty DC, Glykos V, Adams NE, Lebeau FE (2013) Bidirectional modulation of hippocampal gamma (20–80 Hz) frequency activity in vitro via alpha(alpha)- and beta(beta)-adrenergic receptors (AR). Neuroscience 253:142–154

    Article  CAS  PubMed  Google Scholar 

  39. Gibbs ME, Bowser DN (2010) Astrocytic adrenoceptors and learning: alpha1-adrenoceptors. Neurochem Int 57:404–410

    Article  CAS  PubMed  Google Scholar 

  40. Lazzaro SC, Hou M, Cunha C, LeDoux JE, Cain CK (2010) Antagonism of lateral amygdala alpha1-adrenergic receptors facilitates fear conditioning and long-term potentiation. Learn Mem 17:489–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  CAS  PubMed  Google Scholar 

  42. Koizumi M, Midorikawa N, Takeshima H, Murphy NP (2004) Exogenous, but not endogenous nociceptin modulates mesolimbic dopamine release in mice. J Neurochem 89:257–263

    Article  CAS  PubMed  Google Scholar 

  43. Moroz LL, Kohn AB (2011) Parallel evolution of nitric oxide signaling: diversity of synthesis and memory pathways. Front Biosci 16:2008–2051

    Article  CAS  Google Scholar 

  44. Wei XM, Yang W, Liu LX, Qi WX (2013) Effects of l-arginine and N(omega)-nitro-l-arginine methylester on learning and memory and alpha7 nAChR expression in the prefrontal cortex and hippocampus of rats. Neurosci Bull 29:303–310

    Article  CAS  PubMed  Google Scholar 

  45. Mabuchi T, Matsumura S, Okuda-Ashitaka E, Kitano T, Kojima H, Nagano T, Minami T, Ito S (2003) Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production. Eur J Neurosci 17:1384–1392

    Article  PubMed  Google Scholar 

  46. Tekes K, Tariq S, Adeghate E, Laufer R, Hashemi F, Siddiq A, Kalasz H (2013) Nociceptinergic system as potential target in Parkinson’s disease. Mini Rev Med Chem 13:1389–1397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Neuroscience Research Group of the Hungarian Academy of Sciences and TAMOP (4.2.1.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Telegdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palotai, M., Adamik, Á. & Telegdy, G. Involvement of Neurotransmitters in the Action of the Nociceptin/Orphanin FQ Peptide-Receptor System on Passive Avoidance Learning in Rats. Neurochem Res 39, 1477–1483 (2014). https://doi.org/10.1007/s11064-014-1337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1337-8

Keywords

Navigation