Skip to main content
Log in

Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a fractional model of a special structure of bidirectional associative memory (BAM) neural networks called tri-diagonal BAM neural networks (TdBAMNNs) is considered. The Hopf bifurcation analysis is made for the proposed fractional system in the presence of leakage and communication delays. The feasibility of the obtained theoretical results is verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ahmed E, El-Sayed AMA, El-Saka HAA (2006) On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys Lett A 358:1–4. https://doi.org/10.1016/j.physleta.2006.04.087

    Article  MathSciNet  MATH  Google Scholar 

  2. Ali MS, Narayanan G, Sevgen S, Shekher V, Arik S (2019) Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects. Commun Nonlinear Sci Numer Simul. https://doi.org/10.1016/j.cnsns.2019.104853

    Article  MathSciNet  MATH  Google Scholar 

  3. Alzabut J, Swati T, Abbas S (2020) Discrete fractional-order BAM neural networks with leakage delay: existence and stability results. Asian J Cont 22(1):1–13. https://doi.org/10.1002/asjc.1918

    Article  MathSciNet  Google Scholar 

  4. Huang C, Cao JD (2017) Impact of leakage delay on bifurcation in high-order fractional BAM neural networks. Neural Netw. https://doi.org/10.1016/j.neunet.2017.11.020

    Article  MATH  Google Scholar 

  5. Huang C, Liu H, Chen Y, Chen X, Song F (2021) Dynamics of a fractional-order BAM neural network with leakage delay and communication delay. Fractals 29(3):2150073. https://doi.org/10.1142/S0218348X21500730

    Article  MATH  Google Scholar 

  6. Huang C, Liu H, Shi X, Chen X, Xiao M, Wang Z, Cao JD (2020) Bifurcations in a fractional-order neural network with multiple leakage delays. Neural Netw 131:115–126. https://doi.org/10.1016/j.neunet.2020.07.015

    Article  MATH  Google Scholar 

  7. Huang C, Meng Y, Cao JD, Alsaedi A, Alsaadi FE (2017) New bifurcation results for fractional BAM neural network with leakage delay. Chaos Solitons Fractals 100:31–44. https://doi.org/10.1016/j.chaos.2017.04.037

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang C, Wang J, Chen X, Cao JD (2021) Bifurcations in in a fractional-order BAM neural network with four different delays. Neural Netw 141:344–354. https://doi.org/10.1016/j.neunet.2021.04.005

  9. Lin J, Xu R, Li LC (2019) Effect of leakage delay on Hopf bifurcation in a fractional BAM neural network. Int J Bifurcat Chaos 29(6):1950077. https://doi.org/10.1142/S0218127419500779

    Article  MathSciNet  MATH  Google Scholar 

  10. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  11. Wang F, Yang Y, Xu X, Li L (2017) Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput Appl 28:345–352. https://doi.org/10.1007/s00521-015-2063-0

    Article  Google Scholar 

  12. Wang N, Xu C, Liu Z (2021) Further exploration on bifurcation for fractional-order bidirectional associative memory (BAM) neural networks concerning time delay. Complexity 2021:9096727. https://doi.org/10.1155/2021/9096727

    Article  Google Scholar 

  13. Wang T, Cheng Z, Bu R, Ma R (2018) Stability and Hopf bifurcation analysis of a simplified six-neuron tridiagonal two-layer neural network model with delays. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.12.005

    Article  Google Scholar 

  14. Wang T, Wang Y, Cheng Z (2021) Stability and Hopf bifurcation analysis of a general tri-diagonal BAM neural network with delays. Neural Process Lett 53:4571–4592. https://doi.org/10.1007/s11063-021-10613-8

    Article  Google Scholar 

  15. Xu C, Alhejaili W, Saifullah S, Khan A, Khan J, El-Shorbagy MA (2022) Analysis of Huanglongbing disease model with a novel fractional piecewise approach. Chaos Solitons Fractals 161:112316. https://doi.org/10.1016/j.chaos.2022.112316

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu C, Aouiti C, Liu Z (2020) A further study on bifurcation for fractional order BAM neural networks with multiple delays. Neurocomputing 417:501–515. https://doi.org/10.1016/j.neucom.2020.08.047

    Article  Google Scholar 

  17. Xu C, Liao M, Li P, Guo Y, Liu Z (2021) Bifurcation properties for fractional order delayed BAM neural networks. Cogn Comput 13:322–356. https://doi.org/10.1007/s12559-020-09782-w

    Article  Google Scholar 

  18. Xu C, Liao M, Li P, Yan J (2019) Influence of time delay on bifurcation in fractional order BAM neural networks with four delays. IEEE Access 7:70955–70965. https://doi.org/10.1109/ACCESS.2019.2919979

    Article  Google Scholar 

  19. Xu C, Liao M, Li P, Yao L, Qin Q, Shang Y (2021) Chaos control for a fractional-order jerk system via time-delay feedback controller and mixed controller. Fractal fract 5:257. https://doi.org/10.3390/fractalfract5040257

    Article  Google Scholar 

  20. Xu C, Liu Z, Liao M, Li P, Xiao Q, Yuan S (2021) Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation. Math Comput Simul 182:471–494. https://doi.org/10.1016/j.matcom.2020.11.023

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu C, Mu D, Liu Z, Pang Y, Liao M, Aouiti C (2023) New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun Nonlinear Sci Numer Simul 118:107043. https://doi.org/10.1016/j.cnsns.2022.107043

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu C, Mu D, Liu Z, Pang Y, Liao M, Li P, Yao L, Qin Q (2022) Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks. Nonlinear Anal: Model Control 27:1030-1053. https://doi.org/10.15388/namc.2022.27.28491

  23. Xu C, Rahman M ur, Baleanu D (2022) On fractional-order symmetric oscillator with offsetboosting control. Nonlinear Anal: Model Control 27:994-1008. https://doi.org/10.15388/namc.2022.27.28279

  24. Xu C, Zhang W, Aouiti C, Liu Z, Yao L (2023) Bifurcation insight for a fractional-order stage-structured predator–rey system incorporating mixed time delays. Math Methods Appl Sci 46. https://doi.org/10.1002/mma.9041

  25. Yang X, Song Q, Liu Y, Zhao Z (2014) Uniform stability analysis of fractional-order BAM neural networks with delays in the leakage terms. Abstr Appl Anal 2014:261930. https://doi.org/10.1155/2014/261930

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang H, Ye R, Cao JD, Alsaedi A (2017) Existence and globally asymptotic stability of equilibrium solution for fractional-order hybrid BAM neural networks with distributed delays and impulses. Complexity 2017:6875874. https://doi.org/10.1155/2017/6875874

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the study by designing the problem, conceptualization, methodology, and investigation. The first author drafted the manuscript with numerical simulations. Supervision, review, and editing were done by the second author. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Balasubramaniam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Proof of Theorem 3.1:

Let \(\sigma = 0\). The characteristic equation Eq. (4) can be reduced into

$$\begin{aligned} \begin{aligned} r^{2n\omega } + b_{2n-2}r^{(2n-2)\omega } + b_{2n-4}r^{(2n-4)\omega } + \dots + b_{2}r^{2\omega } + b_{0} = 0. \end{aligned} \end{aligned}$$
(14)

Substituting \(r^{2\omega } = \gamma \) in Eq. (14), we have

$$\begin{aligned} \begin{aligned} \gamma ^{n} + \alpha _{n-1}\gamma ^{n-1} + \alpha _{n-2}\gamma ^{n-2} + \dots + \alpha _{2}\gamma ^{2} + \alpha _{1}\gamma + \alpha _{0} = 0, \end{aligned} \end{aligned}$$
(15)

where \( \alpha _{i} \) are the coefficients of \( \gamma ^{i} \) (i = 0,1,2,...,n-1).

The Routh-Hurwitz matrices for 2n-neuron FODTdBAMNNs system (2) is defined as follows.

$$\begin{aligned} \Delta _1= & {} \alpha _{n-1}, \Delta _2 = \left[ \begin{matrix} \alpha _{n-1}&{} 1 \\ \alpha _{n-3}&{} \alpha _{n-2} \end{matrix}\right] , \Delta _3 = \left[ \begin{matrix} \alpha _{n-1}&{} 1 &{} 0\\ \alpha _{n-3}&{} \alpha _{n-2}&{} \alpha _{n-1}\\ \alpha _{n-5}&{} \alpha _{n-4} &{} \alpha _{n-3} \end{matrix}\right] ,\\ \Delta _4= & {} \left[ \begin{matrix} \alpha _{n-1}&{} 1 &{} 0&{} 0\\ \alpha _{n-3}&{} \alpha _{n-2}&{} \alpha _{n-1}&{} 1\\ \alpha _{n-5}&{} \alpha _{n-4} &{} \alpha _{n-3}&{} \alpha _{n-2}\\ \alpha _{n-7}&{} \alpha _{n-6}&{} \alpha _{n-5}&{} \alpha _{n-4} \end{matrix}\right] , \Delta _5 = \left[ \begin{matrix} \alpha _{n-1}&{} 1 &{} 0&{} 0&{} 0\\ \alpha _{n-3}&{} \alpha _{n-2}&{} \alpha _{n-1}&{} 1&{} 0\\ \alpha _{n-5}&{} \alpha _{n-4} &{} \alpha _{n-3}&{} \alpha _{n-2}&{} \alpha _{n-1}\\ \alpha _{n-7}&{} \alpha _{n-6}&{} \alpha _{n-5}&{} \alpha _{n-4}&{} \alpha _{n-3}\\ \alpha _{n-9}&{} \alpha _{n-8}&{} \alpha _{n-7}&{} \alpha _{n-6}&{} \alpha _{n-5} \end{matrix}\right] ,\\ \dots \Delta _{n-1}= & {} \begin{bmatrix} \alpha _{n-1}&{} 1 &{} 0&{} 0&{} \dots &{} 0&{} 0&{} 0&{} 0\\ \alpha _{n-3}&{} \alpha _{n-2}&{} \alpha _{n-1}&{} 1&{} \dots &{} 0&{} 0&{} 0&{} 0\\ \alpha _{n-5}&{} \alpha _{n-4}&{} \alpha _{n-3}&{} \alpha _{n-2}&{} \dots &{} 0&{} 0&{} 0&{} 0\\ \alpha _{n-7}&{} \alpha _{n-6}&{} \alpha _{n-5}&{} \alpha _{n-4}&{} \dots &{} 0&{} 0&{} 0&{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \dots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ 0&{} 0&{} 0&{} 0&{} \dots &{} \alpha _4&{} \alpha _5&{} \alpha _6&{} \alpha _7\\ 0&{} 0&{} 0&{} 0&{} \dots &{} \alpha _2&{} \alpha _3&{} \alpha _4&{} \alpha _5\\ 0&{} 0&{} 0&{} 0&{} \dots &{} 0&{} \alpha _1&{} \alpha _2&{} \alpha _3\\ 0&{} 0&{} 0&{} 0&{} \dots &{} 0&{} 0&{} \alpha _0&{} \alpha _1 \end{bmatrix} and \, \Delta _{n} = \alpha _0. \end{aligned}$$

Let us assume \( \Delta _i > 0\) \( (i = 1,2,...,n)\).

Then by fractional Routh-Hurwitz conjecture [1], all the roots \(\gamma _i\) of Eq. (15) have the absolute value of its argument greater than \(\frac{\omega \pi }{2} \) for \(i = 1,2,...,n\). So, by Lemma 2.1, we can conclude that the FODTdBAMNNs system (2) is asymptotically stable when \(\sigma = 0\). Also, since Eq. (10) has no positive real roots, we can conclude that FODTdBAMNNs system (2) is asymptotically stable in the global sense for \(\sigma \in \left[ 0, \infty \right) \).

This completes the validation. \(\square \)

Proof of Theorem 3.2:

Let \(r(\sigma ) = \mu (\sigma ) + i \nu (\sigma )\) be the root of the Eq. (3) near \(\sigma = \sigma _j\) satisfying \( \mu (\sigma _j) = 0 \) and \( \nu (\sigma _j) = 0 \).

Differentiate Eq. (3) with respect to \(\sigma \), we obtain

$$\begin{aligned}&2n\omega r^{2n\omega -1} \dfrac{dr}{d\sigma } + b_{2n-2} \left[ (2n-2)\omega r^{(2n-2)\omega -1} e^{-2r \sigma } \dfrac{dr}{d\sigma } + r^{(2n-2)\omega } e^{-2r \sigma } \left( -2\sigma \dfrac{dr}{d\sigma } - 2r\right) \right] \\&\qquad + b_{2n-4} \left[ (2n-4)\omega r^{(2n-4)\omega -1} e^{-4r \sigma } \dfrac{dr}{d\sigma } + r^{(2n-4)\omega } e^{-4r \sigma } \left( -4\sigma \dfrac{dr}{d\sigma } - 4r\right) \right] \\&\qquad + \dots + b_{2} \left[ 2\omega r^{2\omega -1} e^{-(2n-2)r \sigma } \dfrac{dr}{d\sigma } + r^{2\omega } e^{-(2n-2)r \sigma } \left( -(2n-2)\sigma \dfrac{dr}{d\sigma } - (2n-2)r\right) \right] \\&\qquad + b_{0} e^{-2nr \sigma } \left( -2n\sigma \dfrac{dr}{d\sigma } - 2nr\right) = 0. \end{aligned}$$

Thus, we have

$$\begin{aligned} \frac{dr}{d\sigma } Q(r) - P(r) = 0, \end{aligned}$$
(16)

where

$$\begin{aligned} \begin{aligned} P(r)&= r[2b_{2n-2} r^{(2n-2)\omega } e^{-2r \sigma } + 4b_{2n-4} r^{(2n-4)\omega } e^{-4r \sigma } + 6b_{2n-6} r^{(2n-6)\omega } e^{-6r \sigma }\\&\quad + \dots + (2n-2)b_{2} r^{2\omega } e^{-(2n-2)r \sigma } + 2nb_{0} e^{-2nr \sigma }],\\ Q(r)&= 2n \omega r^{2n\omega -1} + b_{2n-2} \left[ (2n-2)\omega r^{(2n-2)\omega -1} e^{-2r \sigma } -2\sigma r^{(2n-2)\omega } e^{-2r \sigma } \right] \\&\quad + \dots + b_0 \left[ -2n\sigma e^{-2nr \sigma } \right] . \end{aligned} \end{aligned}$$
(17)

Therefore,

$$\begin{aligned} \dfrac{dr}{d\sigma } = \dfrac{P(r)}{Q(r)}. \end{aligned}$$
(18)

When \(\sigma = \sigma _0\) and \(\nu = \nu _0\), let \( P(r) = P_1 + i P_2 \) and \( Q(r) = Q_1 + i Q_2 \). Then, we have

$$\begin{aligned} \dfrac{dr}{d\sigma }&= \dfrac{P_1 + i P_2}{Q_1 + i Q_2} \\&= \dfrac{(P_1Q_1 - P_2Q_2) + i(P_1Q_2 + P_2Q_1)}{(Q_1)^2 + (Q_2)^2}. \end{aligned}$$

Hence by the assumption \( (\mathcal {A}_2 )\), one can get

$$\begin{aligned} Re\left[ \dfrac{dr}{d\sigma } \right] _{(\sigma = \sigma _0, \nu = \nu _0)} = \dfrac{(P_1Q_1 - P_2Q_2)}{(Q_1)^2 + (Q_2)^2} \ne 0, \end{aligned}$$

where \( P_1,\) \( P_2,\) \( Q_1\) and \(Q_2 \) are obtained as follows.

$$\begin{aligned} \begin{aligned} P_1&= 2b_{2n-2} \theta _0^{(2n-2)\omega +1} \cos \left( \frac{\left[ (2n-2)\omega +1\right] \pi }{2} - 2\theta _0\sigma _0\right) \\&\quad + 4b_{2n-4} \theta _0^{[(2n-4)\omega +1]} \cos \left( \frac{\left[ (2n-4)\omega +1\right] \pi }{2} - 4\theta _0\sigma _0\right) \\&\quad + \dots + 2nb_0 \theta _0 \cos \left( \frac{\pi }{2} - 2n\theta _0\sigma _0\right) ,\\ P_2&=2b_{2n-2} \theta _0^{[(2n-2)\omega +1]} \sin \left( \frac{\left[ (2n-2)\omega +1\right] \pi }{2} - 2\theta _0\sigma _0\right) \\&\quad + 4b_{2n-4} \theta _0^{[(2n-4)\omega +1]} \sin \left( \frac{\left[ (2n-4)\omega +1\right] \pi }{2} - 3\theta _0\sigma _0\right) \\&\quad + \dots + 2nb_0 \theta _0 \sin \left( \frac{\pi }{2} - 2n\theta _0\sigma _0\right) ,\\ Q_1&= 2n\omega \theta _0^{2n\omega -1} \cos \left( \frac{(2n\omega -1)\pi }{2}\right) \\&\quad + (2n-2)\omega b_{2n-2} \theta _0^{(2n-2)\omega -1} \cos \left( \frac{((2n-2)\omega -1)\pi }{2} - 2\theta _0\sigma _0\right) \\&\quad - 2\sigma _0\theta _0^{(2n-2)\omega } \cos \left( \frac{((2n-2)\omega )\pi }{2} - 2\theta _0\sigma _0\right) \\&\quad + (2n-4)\omega b_{2n-4} \theta _0^{(2n-4)\omega -1} \cos \left( \frac{((2n-4)\omega -1)\pi }{2} - 4\theta _0\sigma _0\right) \\&\quad - \sigma _0\theta _0^{(2n-4)\omega } \cos \left( \frac{((2n-4)\omega )\pi }{2} - 4\theta _0\sigma _0\right) + \dots + 2n\sigma _0b_0 \cos (2n\sigma _0\theta _0),\\ Q_2&= 2n\omega \theta _0^{2n\omega -1} \sin \left( \frac{(2n\omega -1)\pi }{2}\right) \\&\quad + (2n-2)\omega b_{2n-2} \theta _0^{(2n-2)\omega -1} \sin \left( \frac{[(2n-2)\omega -1]\pi }{2} - 2\theta _0\sigma _0\right) \\&\quad - 2b_{2n-2}\sigma _0\theta _0^{(2n-2)\omega } \sin \left( \frac{(2n-2)\omega \pi }{2} - 2\theta _0\sigma _0\right) \\&\quad + (2n-4)\omega b_{2n-4} \theta _0^{(2n-4)\omega -1} \sin \left( \frac{[(2n-4)\omega -1]\pi }{2} - 4\theta _0\sigma _0\right) \\&\quad - 4b_{2n-4}\sigma _0\theta _0^{(2n-4)\omega } \sin \left( \frac{(2n-4)\omega \pi }{2} - 4\theta _0\sigma _0\right) + \dots + 2n\sigma _0b_0\sin (2n\sigma _0\theta _0). \end{aligned} \end{aligned}$$

As Eq. (10) has at least one positive real root, we can come to the conclusion that the stability of the zero equilibrium of the FODTdBAMNNs system (2) is asymptotic in the local sense for \(\sigma \in \left[ 0, \sigma _0 \right) \) and Hopf bifurcation occurs at the origin when \(\sigma = \sigma _0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakshana, M., Balasubramaniam, P. Hopf Bifurcation of General Fractional Delayed TdBAM Neural Networks. Neural Process Lett 55, 8095–8113 (2023). https://doi.org/10.1007/s11063-023-11302-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11302-4

Keywords

Mathematics Subject Classification

Navigation