Skip to main content

Reconstructing Medical Images Using Generative Adversarial Networks: A Study

  • Conference paper
  • First Online:
Futuristic Trends in Networks and Computing Technologies

Abstract

Generative adversarial networks (GANs) have been studied and utilized as an alternative to solve medical imaging problems. Major medical imaging applications include image reconstruction, denoising, segmentation, data augmentation, anomaly detection, and synthesis using image-to-image translation (I2I) techniques. There have been many notable improvements for GANs recently, and therefore, a review of notable advances when applying GANs for medical image reconstruction has been conducted for this paper. The aim of this paper is to introduce key I2I ideas and algorithms that work for medical image reconstruction applications. This study presents a review of various GAN architectures and loss functions used for medical image reconstruction that has not been done before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27

    Google Scholar 

  2. Gui J, Sun Z, Wen Y, Tao D, Ye J (2020) A review on generative adversarial networks: algorithms, theory, and applications. arXiv preprint arXiv:2001.06937

  3. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434

  4. Bjorck J, Gomes C, Selman B, Weinberger KQ (2018) Understanding batch normalization. arXiv preprint arXiv:1806.02375

  5. Zhang Z (2018) Improved adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th international symposium on quality of service (IWQoS). pp 1–2

    Google Scholar 

  6. Alotaibi A (2020) Deep generative adversarial networks for image-to-image translation: a review. Symmetry 12:1705

    Article  Google Scholar 

  7. Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1125–1134

    Google Scholar 

  8. Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J (2018) Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8789–8797

    Google Scholar 

  9. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv pre-print arXiv:1411.1784

  10. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234–241

    Google Scholar 

  11. Bank D, Koenigstein N, Giryes R (2020) Autoencoders. arXiv preprint arXiv:2003.05991

  12. Wang Q, Ma Y, Zhao K, Tian Y (2020) A comprehensive survey of loss functions in machine learning. Annals Data Sci, pp 1–26

    Google Scholar 

  13. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA (2016) Context encoders: Feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2536–2544

    Google Scholar 

  14. Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2223–2232

    Google Scholar 

  15. Liu M-Y, Breuel T, Kautz J (2017) Unsupervised image-to-image translation networks. In: Advances in neural information processing systems, pp 700–708

    Google Scholar 

  16. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

    Google Scholar 

  17. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  18. Litjens G, Kooi T, Ehteshami BB, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  19. Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B (2020) 3D deep learning on medical images: a review. Sensors 20:5097

    Article  Google Scholar 

  20. Fu Y, Lei Y, Wang T, Curran Walter J, Liu T, Yang X (2020) Deep learning in medical image registration: a review. Phys Med Biol 65:20TR01

    Google Scholar 

  21. Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (2018) Deep reinforcement learning that matters. In: Proceedings of the AAAI conference on artificial intelligence

    Google Scholar 

  22. Wang J, Zhu H, Wang S-H, Zhang Y-D (2021) A review of deep learning on medical image analysis. Mob Networks Appl 26:351–380

    Article  Google Scholar 

  23. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks, pp 270–279

    Google Scholar 

  24. Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML (2019) Deep learning in medical imaging and radiation therapy. Med Phys 46:e1–e36

    Article  Google Scholar 

  25. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal 58:101552

    Article  Google Scholar 

  26. Kaji S, Kida S (2019) Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol 12:235–248

    Article  Google Scholar 

  27. Zhao H, Gallo O, Frosio I, Kautz J (2016) Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3:47–57

    Article  Google Scholar 

  28. Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC (2018) Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn Reson Med 80:1189–1205

    Article  Google Scholar 

  29. Wang J, Zhao Y, Noble JH, Dawant BM (2018) Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: International conference on medical image computing and computer-assisted intervention, pp 3–11

    Google Scholar 

  30. Huang C-M, Wijanto E, Cheng H-C (2021) Applying a Pix2Pix generative adversarial network to a fourier-domain optical coherence tomography system for artifact elimination. IEEE Access 9:103311–103324

    Article  Google Scholar 

  31. Zhou L, Schaefferkoetter JD, Tham IWK, Huang G, Yan J (2020) Supervised learning with cyclegan for low-dose FDG PET image denoising. Med Image Anal 65:101770

    Article  Google Scholar 

  32. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning, pp 214–223

    Google Scholar 

  33. Zhao K, Zhou L, Gao S, Wang X, Wang Y, Zhao X, Wang H, Liu K, Zhu Y, Ye H (2020) Study of low-dose PET image recovery using supervised learning with CycleGAN. PLoS ONE 15:e0238455

    Article  Google Scholar 

  34. Gu J, Yang TS, Ye JC, Yang DH (2021) CycleGAN denoising of extreme low-dose cardiac CT using wavelet-assisted noise disentanglement. Med Image Anal 74:102209

    Article  Google Scholar 

  35. Ma Y, Liu Y, Cheng J, Zheng Y, Ghahremani M, Chen H, Liu J, Zhao Y (2020) Cycle structure and illumination constrained GAN for medical image enhancement. In: International conference on medical image computing and computer-assisted intervention, pp 667–677

    Google Scholar 

  36. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357

    Article  Google Scholar 

  37. Yang L, Shangguan H, Zhang X, Wang A, Han Z (2019) High-frequency sensitive generative adversarial network for low-dose CT image denoising. IEEE access. 8:930–943

    Article  Google Scholar 

  38. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

    Google Scholar 

  39. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

    Google Scholar 

  40. Park HS, Baek J, You SK, Choi JK, Seo JK (2019) Unpaired image denoising using a generative adversarial network in X-ray CT. IEEE Access 7:110414–110425

    Article  Google Scholar 

  41. Ma Y, Wei B, Feng P, He P, Guo X, Wang G (2020) Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning. IEEE Access 8:67519–67529

    Article  Google Scholar 

  42. Mao X, Li Q, Xie H, Lau RYK, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2794–2802

    Google Scholar 

  43. Ran M, Hu J, Chen Y, Chen H, Sun H, Zhou J, Zhang Y (2019) Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med Image Anal 55:165–180

    Article  Google Scholar 

  44. Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, Gatidis S, Yang B (2020) MedGAN: medical image translation using GANs. Comput Med Imaging Graph 79:101684

    Article  Google Scholar 

  45. Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4401–4410

    Google Scholar 

  46. Armanious K, Jiang C, Abdulatif S, Küstner T, Gatidis S, Yang B (2019) Unsupervised medical image translation using cycle-MedGAN. In: 2019 27th European signal processing conference (EUSIPCO), pp 1–5

    Google Scholar 

  47. Cohen JP, Luck M, Honari S (2018) Distribution matching losses can hallucinate features in medical image translation. In: International conference on medical image computing and computer-assisted intervention, pp 529–536

    Google Scholar 

  48. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv Neural Inf Process Syst 30

    Google Scholar 

  49. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. Adv Neural Inf Process Syst 29:2234–2242

    Google Scholar 

  50. Xu Q, Huang G, Yuan Y, Guo C, Sun Y, Wu F, Weinberger K (2018) An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint arXiv:1806.07755

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phenilkumar Buch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buch, P., Thakkar, A. (2022). Reconstructing Medical Images Using Generative Adversarial Networks: A Study. In: Singh, P.K., Wierzchoń, S.T., Chhabra, J.K., Tanwar, S. (eds) Futuristic Trends in Networks and Computing Technologies . Lecture Notes in Electrical Engineering, vol 936. Springer, Singapore. https://doi.org/10.1007/978-981-19-5037-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5037-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5036-0

  • Online ISBN: 978-981-19-5037-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics