Skip to main content
Log in

Exponential Stability and Sampled-Data Synchronization of Delayed Complex-Valued Memristive Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper is devoted to the global exponential stability (GES) and synchronization control of delayed complex-valued memristive neural networks (CVMNNs). The criterion on the existence, uniqueness and GES of the equilibrium point (EP) for delayed CVMNNs is established by constructing a suitable Lyapunov functional and using the homeomorphism theory as well as linear matrix inequality. Meanwhile, a sampled-data controller is designed to synchronize the master and slave systems under the framework of inequality techniques and Lyapunov method. Finally, two examples are presented to show the validity of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Article  Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  3. Di Marco M, Forti M, Pancioni L (2018) New conditions for global asymptotic stability of memristor neural networks. IEEE Trans Neural Netw Learn Syst 29:1822–1834

    Article  MathSciNet  Google Scholar 

  4. Li R, Cao J (2016) Stability analysis of reaction–diffusion uncertain memristive neural networks with time-varying delays and leakage term. Appl Math Comput 278:54–69

    MathSciNet  MATH  Google Scholar 

  5. Li R, Cao J (2018) Finite-time and fixed-time stabilization control of delayed memristive neural networks: robust analysis technique. Neural Process Lett 47:1077–1096

    Article  Google Scholar 

  6. Meng Z, Xiang Z (2017) Stability analysis of stochastic memristor-based recurrent neural networks with mixed time-varying delays. Neural Comput Appl 28:1787–1799

    Article  Google Scholar 

  7. Xiao Q, Zeng Z (2018) Lagrange stability for T–S fuzzy memristive neural networks with time-varying delays on time scales. IEEE Trans Fuzzy Syst 26:1091–1103

    Article  Google Scholar 

  8. Wang H, Duan S, Li C et al (2017) Exponential stability analysis of delayed memristor-based recurrent neural networks with impulse effects. Neural Comput Appl 28:669–678

    Article  Google Scholar 

  9. Cao J, Li R (2017) Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci 60:032201

    Article  Google Scholar 

  10. Xu C, Yang X, Lu J et al (2018) Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans Cybern 48:3021–3027

    Article  Google Scholar 

  11. Zhang W, Yang S, Li C et al (2018) Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. Neural Netw 104:93–103

    Article  Google Scholar 

  12. Wu H, Li R, Zhang X et al (2015) Adaptive finite-time complete periodic synchronization of memristive neural networks with time delays. Neural Process Lett 42:563–583

    Article  Google Scholar 

  13. Chen C, Li L, Haipeng P et al (2018) Synchronization control of coupled memristor-based neural networks with mixed delays and stochastic perturbations. Neural Process Lett 47:679–696

    Google Scholar 

  14. Zhang W, Yang S, Li C et al (2018) Finite-time synchronization of delayed memristive neural networks via 1-norm-based analytical approach. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3906-2

    Article  Google Scholar 

  15. Li R, Gao X, Cao J (2019) Exponential synchronization of stochastic memristive neural networks with time-varying delays. Neural Process Lett. https://doi.org/10.1007/s11063-019-09989-5

    Article  Google Scholar 

  16. Xinsong Y, Qiang S, Jinde C et al (2018) Synchronization of coupled Markovian reaction–diffusion neural networks with proportional delays via quantized control. IEEE Trans Neural Netw Learn Syst 30:951–958

    MathSciNet  Google Scholar 

  17. Wang W, Li L, Peng H et al (2015) Anti-synchronization control of memristive neural networks with multiple poportional delays. Neural Process Lett 43:269–283

    Article  Google Scholar 

  18. Li Y, Lou J, Wang Z et al (2018) Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J Frankl Inst 355:6520–6530

    Article  MathSciNet  Google Scholar 

  19. Wang X, Yu Y, Yang N et al (2018) New synchronization criteria for memristor-based recurrent neural networks with mixed delays. IEEE Int Workshop Complex Syst Netw 978:210–217

    Google Scholar 

  20. Li Y (2017) Impulsive synchronization of stochastic neural networks via controlling partial states. Neural Process Lett 46:59–69

    Article  Google Scholar 

  21. Du W, Leung SYS, Tang Y et al (2017) Differential evolution with event-triggered impulsive control. IEEE Trans Cybern 47:244–257

    Article  Google Scholar 

  22. Liu K, Fridman E (2012) Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48:102–108

    Article  MathSciNet  Google Scholar 

  23. Zhang W, Tang Y, Huang T et al (2016) Sampled-data consensus of linear multi-agent systems with packet losses. IEEE Trans Neural Netw Learn Syst 28:2516–2527

    Article  MathSciNet  Google Scholar 

  24. Zeng D, Zhang R, Liu X et al (2018) Improved results on synchronisation of delayed complex dynamical networks via sampled-data control. Int J Syst Sci 49:1242–1255

    Article  MathSciNet  Google Scholar 

  25. Zhang W, Han QL, Tang Y et al (2019) Sampled-data control for a class of linear time-varying systems. Automatica 103:126–134

    Article  MathSciNet  Google Scholar 

  26. Zhang R, Zeng D, Zhong S et al (2018) Sampled-data synchronization for memristive neural networks with multiple time-varying delays via extended convex combination method. IET Control Theory Appl 12:922–932

    Article  MathSciNet  Google Scholar 

  27. Zhou C, Zhang W, Yang X et al (2017) Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process Lett 46:271–291

    Article  Google Scholar 

  28. Zhang Z, Liu X, Zhou D et al (2017) Finite-time stabilizability and instabilizability for complex-valued memristive neural networks with time delays. IEEE Trans Syst Man Cybern Syst 48:2371–2382

    Article  Google Scholar 

  29. Liu D, Zhu S, Sun K (2019) Global anti-synchronization of complex-valued memristive neural networks with time delays. IEEE Trans Cybern 49:1735–1747

    Article  Google Scholar 

  30. Wang H, Duan S, Huang T et al (2017) Exponential stability of complex-valued memristive recurrent neural networks. IEEE Trans Neural Netw Learn Syst 28:766–771

    Article  Google Scholar 

  31. Zhang Z, Liu X, Lin C et al (2017) Exponential stability analysis for delayed complex-valued memristor-based recurrent neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3166-6

    Article  Google Scholar 

  32. Zhang S, Yang Y, Sui X (2019) The intermittent control synchronization of complex-valued memristive recurrent neural networks with time-delays. Neural Process Lett. https://doi.org/10.1007/s11063-019-09988-6

    Article  Google Scholar 

  33. Bernfeld S (1990) Differential equations with discontinuous righthand sides (A. F. Filippov). SIAM Rev 32:312–315

    Article  Google Scholar 

  34. Fang T, Sun J (2014) Stability of complex-valued recurrent neural networks with time-delays. IEEE Trans Neural Netw Learn Syst 25:1709–1713

    Article  Google Scholar 

  35. Zhou BO, Song Q (2013) Boundedness and complete stability of complex-valued neural networks with time delay. IEEE Trans Neural Netw Learn Syst 24:1227–1238

    Article  Google Scholar 

  36. Chen X, Song Q (2013) Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales. Neurocomputing 121:254–264

    Article  Google Scholar 

  37. Fridman E, Seuret A, Richard JP (2004) Robust sampled-data stabilization of linear systems—an input delay approach. Automatica 40:1441–1446

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingbao Gao or Ruoxia Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (Grant Nos. 61803247 and 61273311), Project Funded by China Postdoctoral Science Foundation 2018M640948, the Fundamental Research Funds for the Central Universities under Grant Nos. GK201903003 and 2017TS002, Shaanxi Postdoctoral Science Foundation under Grant No. 2018BSHEDZZ129, Shaanxi Postdoctoral Science Foundation, Natural Science Basic Research Plan in Shaanxi Province of China No. 2017JQ6063.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gao, X. & Li, R. Exponential Stability and Sampled-Data Synchronization of Delayed Complex-Valued Memristive Neural Networks. Neural Process Lett 51, 193–209 (2020). https://doi.org/10.1007/s11063-019-10082-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10082-0

Keywords

Navigation