Skip to main content

Advertisement

Log in

Effects of the Involvement of Calcium Channels on Neuronal Hyperexcitability Related to Alzheimer’s Disease: A Computational Model

  • Published:
Neurophysiology Aims and scope

Signaling pathways of neurons depend on such factors as the type and “strength” of the synapse, cable properties, distribution of ion channels, and biophysical parameters involved. Aggregation of amyloidbeta (Aβ) in Alzheimer’s disease (AD) dramatically affects the functioning of neurons (hippocampal CA1 pyramidal neurons in particular) in multiple ways, which results in loss of memory and cognitive intelligence. To date, the respective available cell models have been focused on individual channel mechanisms involved, without considering the combined effect of those. Due to this, exact information on the respective dysfunction caused in the cell was limited. Therefore, we adopted a methodology analogous to that in studies of neural networks, which takes into account different combinations of the channel mechanisms, to address changes in the number of action potentials (APs) generated (AP counts) in the model. We have taken into consideration decreases in the conductance of A-type potassium channels (KA), delayed rectifier potassium channels (KDR), and sodium channels (Na) in succession to simulate the effect of agglomeration of Aβ. At the same time, we tried to include individual calcium channels, namely L-type (CaL), N-type (CaN), T-type (CaT), and calcium-sensitive potassium channels (Cagk) in unique combinations to identify the behavior and significance of each channel for different input-output relations at locations on the soma and proximal dendrites of the cell. Each of these steps were taken at four distinct AD-influenced stages (30, 60, 90, and 100%). In this study, we found that decreases in the conductance of KA channels induces hyperexcitability, while decreases in the conductance of KDR and Na channels induce hypoexcitability of the neuron. In comparison with KDR, Na channels are highly responsive to CaL, CaN, CaT, and Cagk, and the respective effects are rather significant. In this model, the effects of compensation or rectification on Aβ accumulation were brought about by three methods: first, by altering the conductance of Na channels, second, by reducing the amplitude of input current, and finally, by an equitable combination of both. We found that a higher amount of compensation is required to restore the normal AP counts of the cell under the influence of CaL, as compared with the effects of CaN channels (when each of these are individually included). The model anticipates the potential therapeutic treatments in terms of pharmacological modifications of the channel kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Selkoe, “Translating cell biology into therapeutic advances in Alzheimer’s disease,” Nature, 399, Suppl. 6738, A23–31 (1999).

  2. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden of Alzheimer’s disease,” Alzheimers Dement., 3, No. 3, 186–191 (2007).

    Article  Google Scholar 

  3. Alzheimer’s Association, “2017 Alzheimer’s disease facts and figures,” Alzheimers Dement., 13, No. 4, 325–373 (2017).

    Article  Google Scholar 

  4. J. Gaugler, B. James, T. Johnson, et al., “2019 Alzheimer’s disease facts and figures,” Alzheimers Dement., 15, No. 3, 321–387 (2019).

    Article  Google Scholar 

  5. M. Goedert, “Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer’s disease,” EMBO J., 6, No. 12, 3627–3632 (1987).

    Article  CAS  Google Scholar 

  6. D. Schenk, R. Barbour, W. Dunn, et al., “Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse,” Nature, 400, No. 6740, 173–177 (1999).

  7. Z. Nagy, M. M. Esiri, K. A. Jobst, et al., “Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria,” Dementia, 6, No. 1, 21–31 (1995).

  8. T. Iwatsubo, A. Odaka, N. Suzuki, et al., “Visualization of A beta42 (43) and A beta40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is A beta42 (43),” Neuron, 13, No. 1, 45–53 (1994).

  9. M. A. Findeis, “The role of amyloid beta peptide 42 in Alzheimer’s disease,” Pharmacol. Ther., 116, No. 2, 266–286(2007).

    Article  CAS  Google Scholar 

  10. M. P. Murphy and H. LeVine III, “Alzheimer’s disease and the β-amyloid peptide,” J. Alzheimers Dis., 19, No. 1, 311–323 (2010).

    Article  Google Scholar 

  11. P. I. Moreira, M. S. Santos, A. Moreno, and C. Oliveira, “Amyloid beta-peptide promotes permeability transition pore in brain mitochondria,” Biosci. Rep., 21, No. 6, 789–800 (2001).

    Article  CAS  Google Scholar 

  12. M. Manczak, T. S. Anekonda, E. Henson, et al., “Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression,” Hum. Mol. Genet., 15, No. 9, 1437–1449 (2006).

    Article  CAS  Google Scholar 

  13. P. H. Reddy and M. F. Beal, “Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease,” Trends Mol. Med., 14, No. 2, 45–53 (2008).

    Article  CAS  Google Scholar 

  14. R. D. Terry, “Cell death or synaptic loss in Alzheimer disease,” J. Neuropathol. Exp. Neurol., 59, No. 12, 1118–1119 (2000).

    Article  CAS  Google Scholar 

  15. M. Knobloch and I. M. Mansuy, “Dendritic spine loss and synaptic alterations in Alzheimer’s disease,” Mol. Neurobiol., 37, No. 1, 73–82 (2008).

    Article  CAS  Google Scholar 

  16. T. Morse, N. T. Carnevale, P. G. Mutalik, et al., “Abnormal excitability of oblique dendrites implicated in early Alzheimer’s: a computational study,” Front. Neural Circuits, 4, 16 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Y. Wang, Y. Shi, and H. Wei, “Calcium dysregulation in Alzheimer’s disease: A target for new drug development,” J. Alzheimers Dis. Parkinsonism, 7, No. 5, 374 (2017).

  18. D. W. Wesson, R. A. Nixon, E. Levy, and D. A. Wilson, “Mechanisms of neural and behavioral dysfunction in Alzheimer’s disease,” Mol. Neurobiol., 43, No. 3, 163–179 (2011).

    Article  CAS  Google Scholar 

  19. S. Frere and I. Slutsky, “Alzheimer’s disease: from firing instability to homeostasis network collapse,” Neuron, 97, 1, 32–58 (2018).

    Article  CAS  Google Scholar 

  20. A. A. M. Rensink, R. M. W. de Waal, B. Kremer, M. M. Verbeek, “Pathogenesis of cerebral amyloid angiopathy,” Brain Res. Rev., 43, No. 2, 207–223 (2003).

    Article  CAS  Google Scholar 

  21. L. Texidó, M. Martín-Satué, E. Alberdi, et al., “Amyloid β peptide oligomers directly activate NMDA receptors,” Cell Calcium, 49, No. 3, 184–190 (2011).

    Article  Google Scholar 

  22. B. G. Perez-Nievas and A. Serrano-Pozo, “Deciphering the astrocyte reaction in Alzheimer’s disease,” Front. Aging Neurosci., 10, 114 (2018).

    Article  Google Scholar 

  23. K. Limbrick, H. Fujiyama, F. Martin, and J. Summers, “The effect of a cognitive enhancement training program on source memory in older adults,” Alzheimers Dementia, 7, No. 4S, S253 (201 1).

  24. T. H. Ferreira-Vieira, I. M. Guimaraes, F. R. Silva, and F. M. Ribeiro, “Alzheimer’s disease: targeting the cholinergic system,” Curr. Neuropharmacol., 14, No. 1, 101–115 (2016).

    Article  CAS  Google Scholar 

  25. R. E. Becker, N. H. Greig, and E. Giacobini, “Why do so many drugs for Alzheimer’s disease fail in development? Time for new methods and new practices?,” J. Alzheimers Dis., 15, No. 2, 303–325 (2008).

    Article  Google Scholar 

  26. I. O. Korolev, “Alzheimer’s disease: a clinical and basic science review,” Med. Stud. Res. J., 4, 24–33 (2014).

    Google Scholar 

  27. Y. E. Rodrigues and J. da Silva Freitas, “CA1 and CA3 pyramidal cell morphologies under Alzheimer’s disease Amyloid beta interaction,” bioRxiv, 187476 (2017).

  28. V. Cutsuridis and A. A. Moustafa, “Computational models of Alzheimer’s disease,” Scholarpedia, 12, No. 1, 32144 (2017).

  29. B. De Strooper and E. Karran, “The cellular phase of Alzheimer’s disease,” Cell, 164, No. 4, 603–615 (2016).

    Article  Google Scholar 

  30. W. Duch, “Computational models of dementia and neurological problems,” Methods Mol. Biol., 401, 305–336 (2007).

    Article  CAS  Google Scholar 

  31. V. Culmone and M. Migliore, “Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments,” Front. Comput. Neurosci., 6, 52 (2012).

    Article  Google Scholar 

  32. T. A. Good, D. O. Smith, and R. M. Murphy, “Betaamyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons,” Biophys. J., 70, No. 1, 296–304 (1996).

    Article  CAS  Google Scholar 

  33. D. Y. Kim, B. W. Carey, H. Wang, et al., “BACE1 regulates voltage-gated sodium channels and neuronal activity,” Nat. Cell Biol., 9, No. 7, 755–764 (2007).

    Article  CAS  Google Scholar 

  34. N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge University Press (2006).

  35. G. S. Yi, J. Wang, B. Deng, and X. L. Wei, “Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study,” Sci. Rep., 7, No. 1, 1–13 (2017).

    Article  Google Scholar 

  36. M. Migliore, G. Novara, and D. Tegolo, “Single neuron binding properties and the magical number 7,” Hippocampus, 18, No. 11, 1122–1130 (2008).

  37. M. Migliore G. M. Shepherd, “Emerging rules for the distributions of active dendritic conductances,” Nat. Rev. Neurosci., 3, No. 5, 362–370 (2002).

    Article  CAS  Google Scholar 

  38. S. Gasparini, M. Migliore, and J. C. Magee, “On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons,” J. Neurosci., 24, 49, 11046–11056 (2004).

    Article  CAS  Google Scholar 

  39. R. K. Wong and M. Stewart, “Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus,” J. Physiol., 457, 675–687 (1992).

    Article  CAS  Google Scholar 

  40. X. Zou, D. Coyle, K. Wong-Lin, and L. Maguire, “Computational study of hippocampal-septal theta rhythm changes due to β-amyloid-altered ionic channels,” PloS One, 6, No. 6, e21579 (2011).

    Article  CAS  Google Scholar 

  41. Y. Rui, R. Li, Y. Liu, et al., “Acute effect of beta amyl-oid on synchronized spontaneous Ca2+ oscillations in cultured hippocampal networks,” Cell Biol. Int., 30, No. 9, 733–740 (2006).

    Article  CAS  Google Scholar 

  42. R. E. Westenbroek, M. K. Ahlijanian, and W. A. Catterall, “Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons,” Nature, 347, No. 6290, 281–284 (1990).

    Article  CAS  Google Scholar 

  43. R. E. Westenbroek, J. W. Hell, C. Warner, et al., “Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit,” Neuron, 9, No. 6, 1099–1115 (1992).

    Article  CAS  Google Scholar 

  44. R. E. Westenbroek, T. Sakurai, E. M. Elliott, et al., “Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels,” J. Neurosci., 15, No. 10, 6403–6418 (1995).

    Article  CAS  Google Scholar 

  45. J. C. Magee and M. Carruth, “Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons,” J. neurophysiol., 82, No. 4, 1895–1901 (1999).

    Article  CAS  Google Scholar 

  46. J. C. Magee and D. Johnston, “Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons,” J. Physiol., 487, Pt. 1, 67–90 (1995).

    Article  CAS  Google Scholar 

  47. G. Reckziegel, H. Beck, J. Schramm, et al., “Electrophysiological characterization of Na+ currents in acutely isolated human hippocampal dentate granule cells,” J. Physiol., 509, Pt. 1, 139–150 (1998).

    Article  CAS  Google Scholar 

  48. N. Spruston, “Pyramidal neurons: dendritic structure and synaptic integration,” Nat. Rev. Neurosci., 9, No. 3, 206–221 (2008).

    Article  CAS  Google Scholar 

  49. T. V. P. Bliss and S. F. Cooke, “Long-term potentiation and long-term depression: a clinical perspective,” Clinics (Sao Paulo), 66, Suppl. 1, 3–17 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, J., Lakhani, A. & Dave, V. Effects of the Involvement of Calcium Channels on Neuronal Hyperexcitability Related to Alzheimer’s Disease: A Computational Model. Neurophysiology 52, 334–347 (2020). https://doi.org/10.1007/s11062-021-09890-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-021-09890-9

Keywords

Navigation