Skip to main content

Advertisement

Log in

Modulation of Synaptic Reactions of the “Nociceptive” Neurons in the Cat Cortex upon Stimulation of the Periaqueductal Gray and Application of Some Pharmacological Agents

  • Published:
Neurophysiology Aims and scope

We examined the effects of electrical stimulation of the periaqueductal gray (PAG) and systemic morphine injections on postsynaptic processes in neurons of the cat somatosensory cortex, which were activated by nociceptive influences. Stimulation of the PAG resulted in long-lasting suppression of synaptic reactions induced by stimulation of dental pulp nociceptors. There was certain parallelism within the conditioning effects of PAG stimulation and effects of systemic introduction of morphine. Ionophoretic application of strychnine on such pyramidal cortical neurons did not evoke paroxysmal depolarization shifts (PDSh) of the membrane potential in such neurons. At the same time, surface application of this agent on the cortex (which influenced extensive populations of cortical neurons) resulted in the development of considerable PDShs. This observation confirms the synaptic nature of the above shifts. Applications of strychnine using both techniques resulted in the blockade of, first of all, early IPSP components in pyramidal neurons but did not affect significantly late components of these potentials; this is indicative of different geneses of the above components. It is supposed that the early IPSP component is generated due to activation of axo-somatic inhibitory synapses, while the late component of such reactions is related to activation of inhibitory synapses localized in the dendrites. The mechanisms of modulation of postsynaptic reactions of somatosensory cortex neurons developing upon activation of high-threshold (nociceptive) afferent inputs are discussed. Such modulation is probably based on changes in both pre- and post-synaptic intracortical cell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dubner and G. J. Bennet, “Spinal and trigeminal mechanisms of nociception,” Annu. Rev. Neurosci., No. 6, 381-418 (1983).

  2. E. V.Gura and V. V. Garkavenko, “Influence of the midbrain central grey matter stimulation on responses of the thalamic ventro-postero-medial nucleus neurons in cats,” Neurophysiology, 20, No. 5, 688-693 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. J. Hosobuchi, I. Rossier, F. F. Bloo, and R. Guillemin, “Periaqueductal gray stimulation for pain suppression in humans,” in: Adv. Pain Res. Ther., Raven Press, New York (1979), pp. 515-523.

  4. D. R. Kenshalo, R. Iwata, M. Sholas, and D. A. Thomas, “Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex,” J. Neurophysiol., 84, No. 2, 419-429 (2000).

    Google Scholar 

  5. T. Sh. Labakhua and V. M. Okudzhava, Electrogenesis of Evoked Potentials of the Brain Cortex, Metsniereba, Tbilisi (1992).

    Google Scholar 

  6. F. Reinoso-Suares, Topographischer Hirnatlas der Katze für Experimental-Physiologische Untersuchungen, Merck, Darmstadt (1961).

    Google Scholar 

  7. D. A. Prince, “Neurophysiology of epilepsy,” Ann. Rev. Neurosci., No. 1, 395-418 (1978).

  8. C. Stefanis and H. Jasper, “Strychnine reversal of inhibitory potentials in pyramidal tract neurons,” Int. J. Neuropharmacol., 4, No. 1, 125-138 (1965).

    Article  CAS  PubMed  Google Scholar 

  9. M. Takata and K. Ogata, “Two components of inhibitory postsynaptic potentials evoked in hypoglossal motoneurons by lingual nerve stimulation,” Exp. Neurol., 60, No. 2, 299-310 (1980).

    Article  Google Scholar 

  10. J. S. Kehoe, “Pharmacological characteristics and ionic bases of two component postsynaptic inhibition,” Nature, 215, No. 5105, 1503-1505 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. G. Levi, G. Bernardi, E. Cherubini, et al., “Evidence in favor of a neurotransmitter role of glycine in the rat cerebral cortex,” Brain Res., 236, No. 1, 121-131 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. R. Cunningham and R. Miller, “Electrophysiological analysis of taurine and glycine action on neurons of the retina – intracellular recording,” Brain Res., 197, No. 1, 123-138 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. K. Krnjevic and S. Schwarts,“Is gamma-aminobutyric acid an inhibitory transmitter?” Nature, 211, No. 5056, 1372-1374 (1966).

    Article  CAS  PubMed  Google Scholar 

  14. D. A. Pollen, K. H. Reid, and P. Perot, “Microelectrode studies of experimental 3/sec wave and spike in the cat,” Electroencephalogr. Clin. Neurophysiol., 17, No. 2, 57-67 (1964).

    Article  CAS  PubMed  Google Scholar 

  15. M. G. Kokaya, T. Sh. Labakhua, and V. M. Okudzhava, “Influence of strychnine on evoked potentials and postsynaptic responses of neurons of sensorimotor cortex,” Neurophysiology, 16, No. 4, 480-487 (1984).

    CAS  Google Scholar 

  16. V. M. Okudzhava, Role of the Inhibition Processes in Epileptic Activity, Metsnierba, Tbilisi (1980).

    Google Scholar 

  17. J. C. Eccles, Physiology of Synapses [in Russian], Mir, Moscow (1966).

    Google Scholar 

  18. E. R. Kandel, Cellular Basis of Behavior [in Russian], Mir, Moscow (1980).

    Google Scholar 

  19. T. Sh. Labakhua, S. M. Buthuzi, G. L.Bekaya, et al., “Effect of stimulation of the periaqueductal grey and locus coeruleus on postsynaptic reactions of cat somatosensory cortex neurons activated by nociceptors,” Neurophysiology, 37, No. 1, 55-66 (2005).

    Article  Google Scholar 

  20. Y. T. Williams, M. Y. Cristic, and O. Mensoni, “Cellular and synaptic adaptations mediating opioid dependence,” J. Physiol. Rev., 81, No. 1, 243-299 (2001).

    Google Scholar 

  21. T. Sh. Labakhua, T. K. Dzhanashiya, G. I. Gedevanishvili, et al., “Modulation of postsynaptic responses of nociceptor-activated neurons of the cat somatosensory cortex by stimulation of the substantia nigra,” Neurophysiology, 40, Nos. 5/6, 342-349 (2008).

    Article  Google Scholar 

  22. T. Sh. Labakhua,T. K. Dzhanashiya, G. I. Gedevanishvili, et al., “Postsynaptic reactions in somatosensory cortex neurons activated by stimulation of nociceptors: modulation upon stimulation of the central gray, locus coeruleus, and substantia nigra,” Neurophysiology, 41, No. 2, 160-172 (2009).

    Article  Google Scholar 

  23. T. Sh. Labakhua, T. K. Janashia, and G. I. Gedevanishvili, “Raрhe stimulation-evoked modulation of postsynaptic response by neurons of the cat somatosensory cortex activated by stimulation of nociceptors,” Neurophysiology, 42, No. 6, 412-418 (2011).

    Article  CAS  Google Scholar 

  24. T. Sh. Labakhua, T. K. Janashia, and G. I. Gedevanishvili, “Modulation of synaptic processes in cortical neurons in response to painful stimulation and analgesia,” Int. J. Neurol. Res., 2, 51-67 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Sh. Labakhua, T. K. Janashia or G. I. Genevanishvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labakhua, T.S., Janashia, T.K. & Genevanishvili, G.I. Modulation of Synaptic Reactions of the “Nociceptive” Neurons in the Cat Cortex upon Stimulation of the Periaqueductal Gray and Application of Some Pharmacological Agents. Neurophysiology 49, 113–121 (2017). https://doi.org/10.1007/s11062-017-9639-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9639-5

Keywords

Navigation