Skip to main content
Log in

Peculiarities of Activation of Human Muscles in Realization of Cyclic Bimanual Movements with Different Organization of the Cycles

  • Published:
Neurophysiology Aims and scope

According to the characteristics of EMGs subjected to full-wave rectification and low-pass filtering, we examined coordination of central motor commands coming to muscles of the shoulder belt and shoulders in the course of realization of cyclic bimanual movements within a horizontal plane (close to those in sculling). The performance of different motor tasks was tested: (i) movements at a comfortable stroke rate (CSR); (ii) movements at a maximum rate (MR), and (iii) movements with the feedback (FB) information, where the subject could trace the movement rate and angles of rotation of one lever of the experimental set. Two levels of external loading could be applied to the levers of the set (“oars”) in the direction counteracting efforts developed by the subject within the pulling phase. It was found that, in realization of the CSR test, the movement rate was greater at a higher loading than that in the case of a smaller mechanical resistance. The mean level of EMGs of the examined muscles under conditions of a higher loading in realization of the CSR test was greater than that in the FB test. The level of activation of the muscles in the course of the MR test demonstrated no dependence of the level of external loading. The level of correlations between EMG activities of similar muscles of the left and right upper limbs demonstrated a trend toward lowering under conditions of the presence of visual FB. It is supposed that the cognitive influence upon realization of the motor tasks is intensified under the above conditions, and the type of the performed movements becomes closer to the discrete mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gorkovenko, O. V. Legedza, I. V. Vereschaka, et al., “Hysteresis properties of EMG activity of the shoulder belt and shoulder muscles at the development of isometric efforts by the human arm,” Neurophysiology, 47, No. 1, 61-70 (2015).

  2. A. V. Gorkovenko, “Activation of the shoulder-belt and shoulder muscles in two-joint arm movements performed in humans with the action of opposite loadings,” Neurophysiology, 42, 197-205 (2010).

    Article  Google Scholar 

  3. W. Wang, T. Johnson, R. L. Sainburg, and N. Dounskaia, “Interlimb differences of directional biases for stroke production,” Exp. Brain Res., 216, No. 2, 263-274 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. G. Buckingham, G. Binsted, and D. P. Carey, “Bimanual reaching across the hemispace: which hand is yoked to which?” Brain Cogn., 74, No. 3, 341-346 (2010).

    Article  PubMed  Google Scholar 

  5. N. Dounskaia, “Kinematic invariants during cyclical arm movements,” Biol. Cybern., 96, No. 2, 147-163 (2007).

    Article  PubMed  Google Scholar 

  6. C. B. Walter, S. P. Swinnen, and N. V. Dounskaia, “Generation of bimanual trajectories of disparate eccentricity: levels of interference and spontaneous changes over practice,” J. Mot. Behav., 34, No. 2, 183-195 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. N. V. Dounskaia, K. G. Nogueira, S. P. Swinnen, and E. Drummond, “Limitations on coupling of bimanual movements caused by arm dominance: When the muscle homology principle fails,” J. Neurophysiol., 103, No. 4, 2027-2038 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. D. Sternad, H. Marino, S. K. Charles, et al., “Transitions between discrete and rhythmic primitives in a unimanual task,” Front. Comput. Neurosci., 7, article number 90 (2013); doi:10.3389/fncom.2013.00090.

  9. S. Schaal, D. Sternad, R. Osu, and M. Kawato, “Rhythmic arm movement is not discrete,” Nat. Neurosci., 7, No. 10, 1136-1143 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. S. Degallier and A. Ijspeert, “Modeling discrete and rhythmic movements through motor primitives: a review,” Biol. Cybern., 103, No. 4, 319-338 (2010).

    Article  PubMed  Google Scholar 

  11. B. A. Kay, J. A. Kelso, E. L. Saltzman, and G. Schoener, “Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model,” J. Exp. Psychol. Human Percept Perform., 13, No. 2, 178-192 (1987).

    Article  CAS  Google Scholar 

  12. J. A. Kelso, K. G. Holt, P. Rubin, and P. N. Kugler, “Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data,” J. Mot. Behav., 13, No. 4, 226-261 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Li, O. Levin, A. Forner-Cordero, R. Ronsse, and S. P. Swinnen, “Coordination of complex bimanual multijoint movements under increasing cycling frequencies: the prevalence of mirror-image and translational symmetry,” Acta Psychol., 130, No. 3, 183-195 (2009).

    Article  Google Scholar 

  14. O. Donchin, S. C. de Oliveira, and E. Vaadia, “Who tells one hand what the other is doing: the neurophysiology of bimanual movements,” Neuron, 23, 115-118 (1999).

    Article  Google Scholar 

  15. M. Wiesendanger and D. J. Serrien, “The quest to understand bimanual coordination,” Prog. Brain Res., 143, 491-505 (2004).

    Article  PubMed  Google Scholar 

  16. G. S. Mudholkar and S. Govind, Fisher’s Z-Transformation, John Wiley & Sons, (2004); doi 10.1002/9781118445112.stat01534.

  17. E. G. James, “Nonstationarity of stable states in rhythmic bimanual coordination,” Motor Contr., 18, No. 2, 184-198 (2014).

    Article  Google Scholar 

  18. J. Boyles, S. Panzer, and C. H. Shea, “Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback,” Exp. Brain Res., 216, No. 4, 515-525 (2012).

    Article  PubMed  Google Scholar 

  19. S. P. Swinnen, “Intermanual coordination: from behavioural principles to neural-network interactions,” Nat. Rev. Neurosci., 3, No. 5, 348-359 (2002).

    Article  PubMed  Google Scholar 

  20. D. M. Kennedy, J. B. Boyle, J. Rhee, and C. H. Shea, “Rhythmical bimanual force production: homologous and non-homologous muscles,” Exp. Brain Res., 233, No. 1, 181-195 (2014).

    Article  PubMed  Google Scholar 

  21. J. D. Wong, E. T. Wilson, D. A. Kistemaker, and P. L. Gribble, “Bimanual proprioception: are two hands better than one?” J. Neurophysiol., 111, No. 6, 1362-1368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. X. Hu, M. Loncharich, and K. M. Newell, “Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force,” Exp. Brain Res., 209, No. 1, 129-138 (2011).

    Article  PubMed  Google Scholar 

  23. S. Levy-Tzedek, M. B. Tov, and A. Karniel, “Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback,” J. Neurophysiol., 106, No. 5, 2120-2126 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Y. Ya-weng Tseng, J. P. Scholz, and M. Valere, “Effects of movement frequency and joint kinetics on the joint coordination underlying bimanual circle drawing,” J. Mot. Behav., 38, No. 5, 383-404 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Y. Li, O. Levin, A. Forner-Cordero, and S. P. Swinnen, “Effects of interlimb and intralimb constraints on bimanual shoulder-elbow and shoulder-wrist coordination patterns,” J. Neurophysiol., 94, No. 3, 2139-2149 (2005).

    Article  PubMed  Google Scholar 

  26. Y. Li, O. Levin, A. Forner-Cordero, and S. P. Swinnen. “Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movement,” Exp. Brain Res., 163, No. 4, 515-526 (2005).

    Article  PubMed  Google Scholar 

  27. A. Biess, M. Nagurka, and T. Flash, “Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices,” Biol. Cybern., 95, No. 1, 31-53 (2006).

    Article  PubMed  Google Scholar 

  28. R. Ronsse, D. Sternad, and P. Lefevre, “A computational model for rhythmic and discrete movements in uni- and bimanual coordination,” Neural. Comput., 21, No. 5, 1335-1370 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. de Rugy and D. Sternad, “Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements,” Brain Res., 994, No. 2, 160-174 (2003).

    Article  PubMed  Google Scholar 

  30. R. L. Sainburg and S. Y. Schaefer, “Interlimb differences in control of movement extent,” J. Neurophysiol., 92, No. 3, 1374-1383 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. G. Buckingham, J. C. Main, and D. P. Carey, “Asymmetries in motor attention during a cued bimanual reaching task: left and right handers compared,” Cortex, 47, No. 4, 432-440 (2011).

  32. L. B. Bagesteiro and R. L. Sainburg, “Handedness: dominant arm advantages in control of limb dynamics,” J. Neurophysiol., 88, No. 5, 2408-2421 (2002).

    Article  PubMed  Google Scholar 

  33. M. R. Hinder, “Interhemispheric connectivity between distinct motor regions as a window into bimanual coordination,” J. Neurophysiol., 107, No. 7, 1791-1794 (2012).

    Article  PubMed  Google Scholar 

  34. C. Grefkes, S. B. Eickhoff, D. A. Nowak, et al., “Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM,” NeuroImage, 41, No. 4, 1382-1394 (2008).

  35. S. C. de Oliveira, “The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models,” Acta Psychol., 110, Nos. 2/3, 139-159 (2002).

  36. J. J. Buchanan and Y. U. Ryu, “Scaling movement amplitude: adaptation of timing and amplitude control in a bimanual task,” J. Mot. Behav., 44, No. 3, 135-147 (2012).

    Article  PubMed  Google Scholar 

  37. N. Dounskaia, J. A. Goble, and W. Wang, “The role of intrinsic factors in control of arm movement direction: implications from directional preferences,” J. Neurophysiol., 105, No. 3, 999-1010 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Abramovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramovich, T.I., Gorkovenro, A.V., Vereshchaka, I.V. et al. Peculiarities of Activation of Human Muscles in Realization of Cyclic Bimanual Movements with Different Organization of the Cycles. Neurophysiology 48, 31–42 (2016). https://doi.org/10.1007/s11062-016-9566-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-016-9566-x

Keywords

Navigation