Skip to main content
Log in

Long non-coding RNA LINC01018 inhibits human glioma cell proliferation and metastasis by directly targeting miRNA-182-5p

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Aim

Accumulating evidence suggests that lncRNAs are potential biomarkers and key regulators of tumor development and progression. However, the precise function of most lncRNAs in glioma remains unknown. In this study, we explored the role of long intergenic non-protein coding RNA 1018 (LINC01018) in human glioma.

Methods

Expression levels of LINC01018 and miR-182-5p in clinical glioma tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Cell proliferation, migration, and invasion were determined by Cell Counting Kit-8 (CCK-8) assay and Transwell assay. Epithelial-mesenchymal transition (EMT) related proteins were measured by Western blotting. Direct relationship between LINC01018 and miR-182-5p was tested by dual-luciferase reporter assay, RNA immunoprecipitation assay (RIP), and rescue assays. Lastly, bioinformatics analyses were conducted to predict the downstream factors of LINC01018/miR-182-5p axis in glioma.

Results

LINC01018 was significantly down-regulated in glioma tissues and cell lines. Overexpression of LINC01018 dramatically inhibited cell proliferation, migration, and invasion and reverse EMT process in glioma. LINC01018 directly target to miR-182-5p. Forced up-regulation of miR-182-5p reversed the inhibitory effects on proliferative and metastatic abilities of glioma cells with LINC01018 overexpression. Lastly, the bioinformatics analyses revealed that LINC01018/miR-182-5p axis mediated a cluster of downstream genes (ADRA2C, RAB6B, RAB27B, RAPGEF5, STEAP2, TAGLN3, and UNC13C), which were potential key factors in the development of glioma.

Conclusion

LINC01018 inhibits cell proliferation and metastasis in human glioma by targeting miR-182-5p, and should be considered as a potential therapeutic target in this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850

    Article  CAS  PubMed  Google Scholar 

  2. Chhabda S et al (2016) The 2016 World Health Organization classification of tumours of the Central Nervous System: what the paediatric neuroradiologist needs to know. Quant Imaging Med Surg 6(5):486–489

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  4. Ahluwalia MS, Chang SM (2014) Medical therapy of gliomas. J Neurooncol 119(3):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82

    Article  CAS  PubMed  Google Scholar 

  6. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  7. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  CAS  PubMed  Google Scholar 

  8. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154(1):26–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu H, Yang L, Chen LL (2017) The Diversity of long noncoding RNAs and their generation. Trends Genet 33(8):540–552

    Article  CAS  PubMed  Google Scholar 

  10. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839(11):1097–1109

    Article  CAS  PubMed  Google Scholar 

  12. Yan Y et al (2017) An insight into the increasing role of LncRNAs in the pathogenesis of gliomas. Front Mol Neurosci 10:53

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chandra Gupta S, Nandan Tripathi Y (2017) Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 140(9):1955–1967

    Article  CAS  PubMed  Google Scholar 

  14. Wang W et al (2020) Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment. J Hematol Oncol 13(1):67

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun Z et al (2018) Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer 17(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang S et al (2019) LINC01018 confers a novel tumor suppressor role in hepatocellular carcinoma through sponging microRNA-182-5p. Am J Physiol Gastrointest Liver Physiol 317(2):G116–G126

    Article  CAS  PubMed  Google Scholar 

  17. Miao Y et al (2017) Comprehensive analysis of a novel four-lncRNA signature as a prognostic biomarker for human gastric cancer. Oncotarget 8(43):75007–75024

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  19. Gao J et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tang Z et al (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li JH et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(D1):D92–D97

    Article  CAS  PubMed  Google Scholar 

  22. Cavaliere R, Wen PY, Schiff D (2007) Novel therapies for malignant gliomas. Neurol Clin 25(4):1141–1171

    Article  PubMed  Google Scholar 

  23. Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas–a clinical review of three selected approaches. Pharmacol Ther 139(3):341–358

    Article  CAS  PubMed  Google Scholar 

  24. Zottel A et al (1842) (2020) Coding of glioblastoma progression and therapy resistance through long noncoding RNAs. Cancers 12(7):1842

    Article  Google Scholar 

  25. Liang Q et al (2020) Profiling pro-neural to mesenchymal transition identifies a lncRNA signature in glioma. J Transl Med 18(1):378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee JM et al (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhamija S, Diederichs S (2016) From junk to master regulators of invasion: lncRNA functions in migration EMT and metastasis. Int J Cancer 139(2):269–280

    Article  CAS  PubMed  Google Scholar 

  28. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    Article  CAS  PubMed  Google Scholar 

  29. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338(6113):1435–1439

    Article  CAS  PubMed  Google Scholar 

  30. Pandey RR, Kanduri C (2011) Transcriptional and posttranscriptional programming by long noncoding RNAs. Prog Mol Subcell Biol 51:1–27

    Article  CAS  PubMed  Google Scholar 

  31. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang L et al (2020) LINC01018 and SMIM25 sponged miR-182-5p in endometriosis revealed by the ceRNA network construction. Int J Immunopathol Pharmacol 34:2058738420976309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang S et al (2020) Circular RNA SFMBT2 inhibits the proliferation and metastasis of glioma cells through Mir-182-5p/Mtss1 pathway. Technol Cancer Res Treat 19:1533033820945799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue J et al (2016) miR-182-5p induced by STAT3 activation promotes glioma tumorigenesis. Cancer Res 76(14):4293–4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H et al (2015) Hypomethylated Rab27b is a progression-associated prognostic biomarker of glioma regulating MMP-9 to promote invasion. Oncol Rep 34(3):1503–1509

    Article  PubMed  Google Scholar 

  36. Prasad B, Tian Y, Li X (2020) Large-scale analysis reveals gene signature for survival prediction in primary glioblastoma. Mol Neurobiol 57(12):5235–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors thank for the financial supports from Youth Program of National Natural Science Foundation of China (Grant No. 81902846) and Guangzhou Science and Technology Project (Grant No. 201707010380).

Author information

Authors and Affiliations

Authors

Contributions

Hu Su, Zhao Hailin and Luo Dongdong wrote the paper; Yin Jiang, Huang Shuncheng and Zhang Shun conceived the experiments; Li Dan and Peng Biao analyzed the data; Hu Su, Zhao Hailin and Luo Dongdong collected and provided the sample for this study. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Peng Biao.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 3917 KB)

Supplementary file2 (JPG 3299 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Hailin, Z., Dongdong, L. et al. Long non-coding RNA LINC01018 inhibits human glioma cell proliferation and metastasis by directly targeting miRNA-182-5p. J Neurooncol 160, 67–78 (2022). https://doi.org/10.1007/s11060-022-04113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04113-5

Keywords

Navigation