Skip to main content
Log in

The development and testing of olfactory-based neurofeedback for the EEG alpha rhythm

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

This study presents the development and initial testing of a novel olfactory-based neurofeedback (NFB) system, utilizing electroencephalographic (EEG) recordings. Distinct from traditional visual or auditory NFB, this approach explores olfactory stimuli as the way to deliver NFB. The developed and tested olfactory-based system offers multiple opportunities because olfaction has strong associations with memory and emotional states and therefore can be a sufficiently strong reinforcing stimulus for both classical and instrumental conditioning. The developed system incorporates an EEG apparatus, an automated olfactory display delivering Sniffin’ Sticks, and a Python application for EEG-to-NFB signal conversion. We conducted a preliminary evaluation with fifteen participants split into the olfactory NFB, auditory NFB, and mock-olfactory NFB groups. The NFB represented the occipital alpha rhythm. We observed an increase in alpha power in the true NFB groups and a fatigue-related decrease in the mock NFB group. These initial results demonstrate the feasibility of olfactory NFB and establish a framework for this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Figure 6

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Brauchli, P., Rüegg, P. B., Etzweiler, F., & Zeier, H. (1995). Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem Senses 20(5): 505-515. https://doi.org/10.1093/chemse/20.5.505.

    Article  CAS  PubMed  Google Scholar 

  2. Cherninskii, A. A., Zima, I. G., Makarchouk, N. Y., Piskorskaya, N. G., & Kryzhanovskii, S. A. (2009). Modifications of EEG related to directed perception and analysis of olfactory information in humans. Neurophysiology 41(1):63–70. https://doi.org/10.1007/s11062-009-9078-z.

    Article  Google Scholar 

  3. Coben, R., Linden, M., Myers, T.E. (2010) Neurofeedback for autistic spectrum disorder: a review of the literature. Appl Psychophysiol Biofeedback 35(1): 83-105. https://doi.org/10.1007/s10484-009-9117-y.

    Article  PubMed  Google Scholar 

  4. Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., Van De Ville, D., & Haller, S. (2017). Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI-A pilot study. Neuroimage Clin 14: 97-104. https://doi.org/10.1016/j.nicl.2016.12.023

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Ruiz, M. A., Kapralos, B., & Rebolledo-Mendez, G. (2021). An overview of olfactory displays in education and training. Multimodal Technol. Interact. 5(10):64. https://doi.org/10.3390/mti5100064.

    Article  Google Scholar 

  6. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,& Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci 7: 267. https://doi.org/10.1016/j.neuroimage.2013.10.027.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gruzelier, J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn Process 10 Suppl 1:S101-9. https://doi.org/10.1007/s10339-008-0248-5.

    Article  PubMed  Google Scholar 

  8. Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E., & Kobal, G. (1997). 'Sniffin' sticks'. Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1): 39-52. https://doi.org/10.1093/chemse/22.1.39.

  9. Janssen, T.W., Bink, M., Geladé, K., van Mourik. R., Maras A.Oosterlaan, J. (2016) A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD. J Child Psychol Psychiatry 57(5):633-44. https://doi.org/10.1111/jcpp.12517.

    Article  PubMed  Google Scholar 

  10. Kato, M., Okumura, T., Tsubo, Y., Honda, J., Sugiyama, M., Touhara, K., & Okamoto, M. (2022). Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding. Proc Natl Acad Sci U S A. 119(21): e2114966119. https://doi.org/10.1073/pnas.2114966119ю

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawala-Sterniuk, A., Browarska, N., Al-Bakri, A., Pelc, M., Zygarlicki, J., Sidikova, M.,& Gorzelanczyk, E. J. (2021). Summary of over fifty years with brain-computer interfaces—a review. Brain Sci 11(1): 43. https://doi.org/10.3390/brainsci11010043.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev 29(2-3):169-95. https://doi.org/10.1016/S0165-0173(98)00056-3.

    Article  CAS  PubMed  Google Scholar 

  13. Kluger, D.S, Balestrieri, E., Busch, N.A, Gross, J. (2021). Respiration aligns perception with neural excitability. Elife 14:10:e70907. https://doi.org/10.7554/elife.70907.

    Article  CAS  Google Scholar 

  14. Le Van Quyen, M., Foucher, J., Lachaux, J. P., Rodriguez, E., Lutz, A., Martinerie, J., & Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111(2): 83-98. https://doi.org/10.1016/s0165-0270(01)00372-7.

    Article  PubMed  Google Scholar 

  15. Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic Clin Neurosc 7(2): 143-158. https://doi.org/10.15412/j.bcn.03070208.

  16. McCarthy-Jones S. (2012). Taking back the brain: could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia?. Schizophr Bull 38(4): 678–682. https://doi.org/10.1093/schbul/sbs006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ninenko, I., Kleeva, D. F., Bukreev, N., & Lebedev, M. A. (2023). An experimental paradigm for studying EEG correlates of olfactory discrimination. Front Hum Neurosci 17:1117801. https://doi.org/10.3389/fnhum.2023.1117801.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oblak, E. F., Lewis-Peacock, J. A., & Sulzer, J. S. (2017). Self-regulation strategy, feedback timing and hemodynamic properties modulate learning in a simulated fMRI neurofeedback environment. PLoS Comput Biol 13(7):e1005681. https://doi.org/10.1371/journal.pcbi.1005681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ros, T., Moseley, M.J., Bloom, P.A., Benjamin, L., Parkinson, L.A., Gruzelier, J.H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neurosci 10:87. https://doi.org/10.1186/1471-2202-10-87

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schütze, M. D., & Junghanns, K. (2015). The Difficulty of Staying Awake During Alpha/Theta Neurofeedback Training. Appl Psychophysiol Biofeedback 40(2):85-94. https://doi.org/10.1007/s10484-015-9278-9.

    Article  PubMed  Google Scholar 

  21. Sokhadze, T. M., Cannon, R. L., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl psychophysiol biofeedback 33(1): 1–28. https://doi.org/10.1007/s10484-007-9047-5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, Grant №21-75-30024.

Author information

Authors and Affiliations

Authors

Contributions

AM, IN and MAL designed the study. AM prepared the software for the experiments and conducted the experiments. AM, IN, DFK and MAL analyzed the data. AF, AB, MAC and DT designed and constructed the odor delivery device. AM, IN, DFK and MAL wrote the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Ivan Ninenko.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or conflicts of interest regarding the publication of this article.

Ethics statement

The study was conducted in accordance with the ethical standards of the 1964 Declaration of Helsinki. The Institutional Review Board of the Skolkovo Institute of Science and Technology (Skoltech) approved the experimental protocol of this study (minutes № 10 dated May 18, 2023). All participants provided written informed consent before the experiments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, A., Ninenko, I., Kleeva, D.F. et al. The development and testing of olfactory-based neurofeedback for the EEG alpha rhythm. Neurosci Behav Physi 54, 177–186 (2024). https://doi.org/10.1007/s11055-024-01580-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-024-01580-3

Keywords

Navigation