Skip to main content
Log in

Phase Coherence of Rhythmic Brain Activity as an Indicator of Differences in Sound Stimuli in the Oddball Paradigm

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This study addressed the influences of acoustic context on evoked rhythmic activity in the human brain underlying discrimination of stationary and moving sound stimuli using the oddball paradigm. Changes in context were created by rearranging the roles of the standard and deviant stimuli in different series. Event-related spectral perturbations (ERSP) and intertrial phase coherence (ITC), calculated on the basis of frequency-time decomposition of EEG traces, were analyzed. The moving standard stimulus evoked greater coherence of α and θ oscillations than the stationary standard. Presentation of moving stimuli as deviants led to an additional increase in the coherence of the evoked oscillations. In the direct configuration, presentation of deviants produced synchronization of slow oscillations, while presentation in the reverse configuration produced desynchronization. The extent of phase coherence can presumptively be regarded as an objective indicator of the discrimination of moving and stationary sound signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al’tman, Ya. A., Vaitulevich, S. F., Varfolomeev, A. L., et al., “Mismatch negativity as a neuron indicator of the discriminatory localization ability of the human auditory system,” Fiziol. Cheloveka, 33, No. 5, 22–30 (2007).

  • Barcelo, F., Escera, C., Corral, M. J., and Periáñez, J. A., “Task switching and novelty processing activate a common neural network for cognitive control,” J. Cogn. Neurosci., 18, 1734–1748 (2006).

    Article  PubMed  Google Scholar 

  • Bendixen, A., SanMiguel, I., and Schröger, E., “Early electrophysiological indicators for predictive processing in audition: a review,” Int. J. Psychophysiol., 83, 120–131 (2012).

    Article  PubMed  Google Scholar 

  • Bishop, D. V. M. and Hardiman, M. J., “Measurement of mismatch negativity in individuals: a study using single-trial analysis,” Psychophysiology, 47, 697–705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canolty, R. T., Edwards, E., Dalal, S. S., et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” Science, 313, 1626–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouter, A., Shapiro, K. L., and Hanslmayr, S., “Theta phase synchronization is the glue that binds human associative memory,” Curr. Biol., 27, No. 20, 3143–3148 (2017), https://doi.org/10.1016/j.cub.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Deiber, M.-P., Hasler, R., Colin, J., et al., “Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback,” NeuroImage Clin., 25, 1021–45 (2020), https://doi.org/10.1016/j.nicl.2019.102145.

    Article  Google Scholar 

  • Delorme, A., Sejnowski, T., and Makeig, S., “Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis,” NeuroImage, 34, No. 4, 1443–1449 (2007), https://doi.org/10.1016/j.neuroimage.2006.11.004.

    Article  PubMed  Google Scholar 

  • Demiralp, T., Bayraktaroglu, Z., Lenz, D., et al., “Gamma amplitudes are coupled to theta phase in human EEG during visual perception,” Int. J. Psychophysiol., 64, 24–30 (2007).

    Article  PubMed  Google Scholar 

  • Friedman, D., Cycowicz, Y. M., and Gaeta, H., “The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty,” Neurosci. Biobehav. Res., 25, 355–373 (2001).

    Article  CAS  Google Scholar 

  • Fuentemilla, L., Marco-Pallarés, J., Münte, T. F., and Grau, C., “Theta EEG oscillatory activity and auditory change detection,” Brain Res., 1220, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Granados, D., Lugo, S. Z., Morales, P. T., and Castañeda-Villa, N., “Timefrequency analysis of mismatch negativity (MMN) in healthy Mexican preschool children,” Revista Mexicana de Neurociencia, 20, No. 3, 21–34 (2018), 10.31190/rmn.2018.19.3.21.34.

  • Hanslmayr, S., Staresina, B. P., and Bowman, H., “Oscillations and episodic memory: Addressing the synchronization/desynchronization conundrum,” Trends Neurosci., 39, No. 1, 16–25 (2016), https://doi.org/10.1016/j.tins.2015.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann, C. S., Busch, N. A., and Grigutsch, M., “EEG oscillations and wavelet analysis,” in: Event-Related Potentials: a Methods Handbook, Handy, T. C. (ed.), MIT Press, Cambridge (2005), pp. 229–259.

    Google Scholar 

  • Herrmann, C. S., Rach, S., Vosskuhl, J., and Strüber, D., “Time-frequency analysis of event-related potentials: a brief tutorial,” Brain Topogr., 27, 438–450 (2014).

    Article  PubMed  Google Scholar 

  • Hsiao, F. J., Wu, Z. A., Ho, L. T., and Lin, Y. Y., “Theta oscillation during auditory change detection: An MEG study,” Biol. Psychol., 81, 58– 66 (2009).

    Article  PubMed  Google Scholar 

  • Kaiser, J. and Lutzenberger, W., “Human gamma-band activity: a window to cognitive processing,” NeuroReport, 16, 207–211 (2005).

    Article  PubMed  Google Scholar 

  • Klimesch, W., Sauseng, P., and Hanslmayr, S., “EEG alpha oscillations: the inhibition-timing hypothesis,” Brain Res. Rev., 53, 63–88 (2007).

    Article  PubMed  Google Scholar 

  • Ko, D., Kwon, S., Lee, G.-T., et al., “Theta oscillation related to the auditory discrimination process in mismatch negativity: oddball versus control paradigm,” J. Clin. Neurol., 8, 35–42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenartowicz, A., Mazaheri, A., Jensen, O., and Loo, S. K., “Aberrant modulation of brain oscillatory activity and attentional impairment in ADHD,” Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 3, No. 1, 19–29 (2018), https://doi.org/10.1016/j.bpsc.2017.09.009.

    Article  PubMed  Google Scholar 

  • Lin, Y.-Y., Hsiao, F.-J., Shih, Y.-H., et al., “Plastic phase-locking and magnetic mismatch response to auditory deviants in temporal lobe epilepsy,” Cereb. Cortex, 17, 2516–2525 (2007).

    Article  PubMed  Google Scholar 

  • Makeig, S., Debener, S., Onton, J., and Delorme, A., “Mining event-related brain dynamics,” Trends Cogn. Sci., 8, No. 5, 204–210 (2004), https://doi.org/10.1016/j.tics.2004.03.008.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., and Alho, K., “The mismatch negativity (MMN) in basic research of central auditory processing: A review,” Clin. Neurophysiol., 118, 2544–2590 (2007).

    Article  PubMed  Google Scholar 

  • Polich, J., “Updating P300: an integrative theory of P3a and P3b,” Clin. Neurophysiol., 118, 2128–2148 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, B. M., Clarke, A., Addante, R. J., and Ranganath, C., “Entrainment enhances theta oscillations and improves episodic memory,” Cogn. Neurosci., 9, No. 3–4, 181–193 (2018), https://doi.org/10.1080/17588928.2018.1521386.

    Article  PubMed  Google Scholar 

  • Saberi, K. and Hafter, E. R., in: Binaural and Spatial Hearing in Real and Virtual Environments, Gilkey, R. H. and Anderson, T. R. (eds.), Erlbaum Publishers, NJ (1997).

  • Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W., “Control mechanisms in working memory: A possible function of EEG theta oscillations,” Neurosci. Biobehav. Rev., 34, 1015–1022 (2010).

    Article  PubMed  Google Scholar 

  • Schadow, J., Lenz, D., Dettler, N., et al., “Early gamma-band responses reflect anticipatory top-down modulation in the auditory cortex,” NeuroImage, 47, 651–658 (2009).

    Article  PubMed  Google Scholar 

  • Schadow, J., Lenz, D., Thaerig, S., et al., “Stimulus intensity affects early sensory processing: sound intensity modulates auditory evoked gamma-band activity in human EEG,” Int. J. Psychophysiol., 65, 152–161 (2007).

    Article  PubMed  Google Scholar 

  • Shestopalova, L. B. and Petropavlovskaia, E. A., “ Mismatch negativity and spatial hearing,” Usp. Fiziol. Nauk., 50, No. 3, 14–33 (2019).

    Google Scholar 

  • Shestopalova, L. B., Petropavlovskaia, E. A., Semenova, V. V., and Nikitin, N. I., “Rhythmic activity in the human brain associated with movement of sound stimuli,” Zh. Vyssh. Nerv. Deyat., 70, No. 5, 616–634 (2020a), 10.31857/S0044467720050111.

  • Shestopalova, L. B., Petropavlovskaia, E. A., Semenova, V. V., and Nikitin, N. I., “Lateralization of brain responses to auditory motion: A study using single-trial analysis,” Neurosci. Res., (2020b), https://doi.org/10.1016/j.neures.2020.01.007.

  • Shestopalova, L. B., Petropavlovskaia, E. A., Semenova, V. V., et al., “Effects of acoustic context on perceptual discrimination of spatial sound signals,” Fiziol. Cheloveka, 43, No. 6, 1–11 (2017).

    Google Scholar 

  • Shestopalova, L. B., Petropavlovskaia, E. A., Vaitulevich, S. F., and Nikitin, N. I., “Active and passive discrimination of moving stound stimuli: overall reactions of the human brain,” Ros. Fiziol. Zh., 101, No. 9, 1079–1091 (2015a).

    CAS  Google Scholar 

  • Shestopalova, L. B., Petropavlovskaia, E. A., Vaitulevich, S. F., and Nikitin, N. I., “Contextual effects on preattentive processing of sound motion as revealed by spatial MMN,” Int. J. Psychophysiol., 96, 49–56 (2015b), https://doi.org/10.1016/j.ijpsycho.2015.02.021.

    Article  CAS  PubMed  Google Scholar 

  • Shestopalova, L. B., Petropavlovskaia, E. A., Vaitulevich, S. F., et al., “Discrimination of auditory motion patterns: mismatch negativity study,” Neuropsychologia, 50, 2720–2729 (2012), https://doi.org/10.1016/j.neuropsychologia.2012.07.043.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Clouter, A., Chen, Q., et al., “Single-trial phase entrainment of theta oscillations in sensory regions predicts human associative memory performance,” J. Neurosci., 38, No. 28, 6299–6309 (2018), https://doi.org/10.1523/JNEUROSCI.0349-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabe, H., Sutoh, T., Matsuoka, T., et al., “Transient gamma-band response is dissociated from sensory memory as reflected by MMN,” Neurosci. Lett., 380, 80–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Yan, T., Feng, Y., Liu, T., et al., “Theta oscillations related to orientation recognition in unattended condition: A vMMN study,” Front. Behav. Neurosci., 11, 166 (2017), https://doi.org/10.3389/fnbeh.2017.00166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yordanova, J., Kolev, V., and Kirov, R., “Brain oscillations and predictive processing,” Front. Psychol., 3, 416 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Guo, G., Zhang, J., et al., “Do theta oscillations explain the somatosensory change detection mechanism?” Biol. Psychol., 143, 103–112 (2019), https://doi.org/10.1016/j.biopsycho.2019.02.001.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Shestopalova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 71, No. 6, pp. 830–845, November–December, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestopalova, L.B., Petropavlovskaia, E.A. Phase Coherence of Rhythmic Brain Activity as an Indicator of Differences in Sound Stimuli in the Oddball Paradigm. Neurosci Behav Physi 52, 917–927 (2022). https://doi.org/10.1007/s11055-022-01316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01316-1

Keywords

Navigation