Skip to main content
Log in

Time–Frequency Analysis of Event-Related Potentials: A Brief Tutorial

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Event-related potentials (ERPs) reflect cognitive processes and are usually analyzed in the so-called time domain. Additional information on cognitive functions can be assessed when analyzing ERPs in the frequency domain and treating them as event-related oscillations (EROs). This procedure results in frequency spectra but lacks information about the temporal dynamics of EROs. Here, we describe a method—called time–frequency analysis—that allows analyzing both the frequency of an ERO and its evolution over time. In a brief tutorial, the reader will learn how to use wavelet analysis in order to compute time–frequency transforms of ERP data. Basic steps as well as potential artifacts are described. Rather than in terms of formulas, descriptions are in textual form (written text) with numerous figures illustrating the topics. Recommendations on how to present frequency and time–frequency data in journal articles are provided. Finally, we briefly review studies that have applied time–frequency analysis to mismatch negativity paradigms. The deviant stimulus of such a paradigm evokes an ERO in the theta frequency band that is stronger than for the standard stimulus. Conversely, the standard stimulus evokes a stronger gamma-band response than does the deviant. This is interpreted in the context of the so-called match-and-utilization model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Imagine that an EEG amplifier records technical noise with a spectral density of 0.01 µV/Hz. Then the noise in a frequency band that is 1 Hz wide would be 0.01 µV while it would be 0.1 µV in a band that is 10 Hz wide.

  2. A so-called complex number (z) consists of a real part (a) and an imaginary part (b) such that z=a + bi where i is the imaginary number that results from taking the square root of −1.

  3. The phase-locking factor can also be used to estimate the coherence between two electrodes that is believed to represent whether two brain regions are functionally coupled (i.e. work together). For the sake of brevity, we do not want to go into the details of coherence measures at this point. Good reviews on this topic can be found elsewhere (Varela et al. 2001; Siegel et al. 2012).

  4. Note, that typically two baseline corrections are carried out during a time–frequency analysis. First, a baseline subtraction in the time domain removes direct current (DC) components of the signal (i.e. constant offsets from zero). Subsequently, the time–frequency plot can either be represented as absolute values or with respect to a baseline in the time–frequency domain.

References

  • Atienza M, Cantero JL, Quian Quiroga R (2005) Precise timing accounts for posttraining sleep-dependent enhancements of the auditory mismatch negativity. Neuroimage 26:628–634

    Article  CAS  PubMed  Google Scholar 

  • Barry RJ, Rushby JA, Johnstone SJ, Clarke AR, Croft RJ, Lawrence CA (2004) Event-related potentials in the auditory oddball as a function of EEG alpha phase at stimulus onset. Clin Neurophysiol 115:2593–2601

    Article  PubMed  Google Scholar 

  • Bartnik EA, Blinowska KJ, Durka PJ (1992) Single evoked potential reconstruction by means of wavelet transform. Biol Cybern 67:175–181

    Article  CAS  PubMed  Google Scholar 

  • Başar E, Rahn E, Demiralp T, Schürmann M (1998) Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes. Electroencephalogr Clin Neurophysiol 108:101–109

    Article  PubMed  Google Scholar 

  • Başar E, Schürmann M, Demiralp T, Başar-Eroglu C, Ademoglu A (2001) Event-related oscillations are “real brain responses”–wavelet analysis and new strategies. Int J Psychophysiol 39:91–127

    Article  PubMed  Google Scholar 

  • Başar-Eroglu C, Başar E, Demiralp T, Schürmann M (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels: a review. Int J Psychophysiol 13:161–179

    Article  PubMed  Google Scholar 

  • Bastiaansen M, Hagoort P (2003) Event-induced theta responses as a window on the dynamics of memory. Cortex 39:967–992

    Article  PubMed  Google Scholar 

  • Bastiaansen MCM, Posthuma D, Groot PFC, De Geus EJC (2002) Event-related alpha and theta responses in a visuo-spatial working memory task. Clin Neurophysiol 113:1882–1893

    Article  PubMed  Google Scholar 

  • Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131

    Article  PubMed  Google Scholar 

  • Bennett CM, Wolford GL, Miller MB (2009) The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci 4:417–422

    Article  PubMed Central  PubMed  Google Scholar 

  • Bishop DVM, Hardiman MJ (2010) Measurement of mismatch negativity in individuals: a study using single-trial analysis. Psychophysiology 47:697–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blankertz B, Lemm S, Treder M, Haufe S, Müller K-R (2011) Single-trial analysis and classification of ERP components—a tutorial. Neuroimage 56:814–825

    Article  PubMed  Google Scholar 

  • Bricolo A, Turazzi S, Faccioli F, Odorizzi F, Sciaretta G, Erculiani P (1978) Clinical application of compressed spectral array in long-term EEG monitoring of comatose patients. Electroencephalogr Clin Neurophysiol 45:211–225

    Article  CAS  PubMed  Google Scholar 

  • Busch NA, Herrmann CS (2003) Object-load and feature-load modulate EEG in a short-term memory task. NeuroReport 14:1721–1724

    Article  PubMed  Google Scholar 

  • Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29:7869–7876

    Article  CAS  PubMed  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Vos M, Thorne JD, Yovel G, Debener S (2012) Let’s face it, from trial to trial: comparing procedures for N170 single-trial estimation. Neuroimage 63:1196–1202

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, Von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, Ergen M, Herrmann CS (2007) Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol 64:24–30

    Article  PubMed  Google Scholar 

  • Dietsch G (1932) Fourier-Analyse von Elektrencephalogrammen des Menschen. Pflügers Archiv für die gesamte Physiologie 230:106–112

    Article  Google Scholar 

  • Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Näätänen R, Polich J, Reinvang I, Van Petten C (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908

    Article  PubMed  Google Scholar 

  • Enriquez-Geppert S, Huster RJ, Scharfenort R, Mokom ZN, Zimmermann J, Herrmann CS (2013) Modulation of frontal-midline theta by neurofeedback. Biol Psychol. doi:10.1016/j.biopsycho.2013.02.019

  • Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20:376–383

    Article  PubMed  Google Scholar 

  • Fellinger R, Klimesch W, Gruber W, Freunberger R, Doppelmayr M (2011) Pre-stimulus alpha phase-alignment predicts P1-amplitude. Brain Res Bull 85:417–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuentemilla L, Marco-Pallarés J, Münte TF, Grau C (2008) Theta EEG oscillatory activity and auditory change detection. Brain Res 1220:93–101

    Article  CAS  PubMed  Google Scholar 

  • Grandchamp R, Delorme A (2011) Single-trial normalization for event-related spectral decomposition reduces sensitivity to noisy trials. Front Psychol 2:236

    Article  PubMed Central  PubMed  Google Scholar 

  • Gruber T, Tsivilis D, Giabbiconi C-M, Müller MM (2008) Induced electroencephalogram oscillations during source memory: familiarity is reflected in the gamma band, recollection in the theta band. J Cogn Neurosci 20:1043–1053

    Article  PubMed  Google Scholar 

  • Guderian S, Düzel E (2005) Induced theta oscillations mediate large-scale synchrony with mediotemporal areas during recollection in humans. Hippocampus 15:901–912

    Article  PubMed  Google Scholar 

  • Haig AR, Gordon E (1998) Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time. Psychophysiology 35:591–595

    Article  CAS  PubMed  Google Scholar 

  • Handy TC (2004) Event-related potentials: a methods handbook. MIT Press, Cambridge

    Google Scholar 

  • Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml K-H (2007) Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37:1465–1473

    Article  PubMed  Google Scholar 

  • Hassler U, Barreto NT, Gruber T (2011) Induced gamma band responses in human EEG after the control of miniature saccadic artifacts. Neuroimage 57:1411–1421

    Article  PubMed  Google Scholar 

  • Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137:346–353

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS, Munk MHJ, Engel AK (2004a) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8:347–355

    Article  PubMed  Google Scholar 

  • Herrmann CS, Senkowski D, Röttger S (2004b) Phase-locking and amplitude modulations of EEG alpha: two measures reflect different cognitive processes in a working memory task. Exp Psychol 51:311–318

    Article  PubMed  Google Scholar 

  • Herrmann CS, Busch NA, Grigutsch M (2005) EEG oscillations and wavelet analysis. In: Handy TC (ed) Event-related potentials: a methods handbook. MIT Press, Cambridge, pp 229–259

    Google Scholar 

  • Herrmann CS, Rach S, Neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:279

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsiao F-J, Wu Z-A, Ho L-T, Lin Y–Y (2009) Theta oscillation during auditory change detection: an MEG study. Biol Psychol 81:58–66

    Article  PubMed  Google Scholar 

  • Isler JR, Tarullo AR, Grieve PG, Housman E, Kaku M, Stark RI, Fifer WP (2012) Toward an electrocortical biomarker of cognition for newborn infants. Dev Sci 15:260–271

    Article  PubMed Central  PubMed  Google Scholar 

  • Jongsma MLA, Eichele T, Van Rijn CM, Coenen AML, Hugdahl K, Nordby H, Quiroga RQ (2006) Tracking pattern learning with single-trial event-related potentials. Clin Neurophysiol 117:1957–1973

    Article  PubMed  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14:166–185

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J, Lutzenberger W (2005) Human gamma-band activity: a window to cognitive processing. NeuroReport 16:207–211

    Article  PubMed  Google Scholar 

  • Karakaş S, Erzengin OU, Başar E (2000) The genesis of human event-related responses explained through the theory of oscillatory neural assemblies. Neurosci Lett 285:45–48

    Article  PubMed  Google Scholar 

  • Keizer AW, Verschoor M, Verment RS, Hommel B (2010) The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures. Int J Psychophysiol 75:25–32

    Article  PubMed  Google Scholar 

  • Kilner JM, Kiebel SJ, Friston KJ (2005) Applications of random field theory to electrophysiology. Neurosci Lett 374:174–178

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J (1998) Induced alpha band power changes in the human EEG and attention. Neurosci Lett 244:73–76

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Schwaiger J, Winkler T, Gruber W (2000) Theta oscillations and the ERP old/new effect: independent phenomena? Clin Neurophysiol 111:781–793

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R (2007) Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev 31:1003–1016

    Article  PubMed  Google Scholar 

  • Ko D, Kwon S, Lee G-T, Im CH, Kim KH, Jung K-Y (2012) Theta oscillation related to the auditory discrimination process in mismatch negativity: oddball versus control paradigm. J Clin Neurol 8:35–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Lenz D, Schadow J, Thaerig S, Busch NA, Herrmann CS (2007) What’s that sound? Matches with auditory long-term memory induce gamma activity in human EEG. Int J Psychophysiol 64:31–38

    Article  PubMed  Google Scholar 

  • Lenz D, Jeschke M, Schadow J, Naue N, Ohl FW, Herrmann CS (2008) Human EEG very high frequency oscillations reflect the number of matches with a template in auditory short-term memory. Brain Res 1220:81–92

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-Y, Hsiao F-J, Shih Y-H, Yiu C-H, Yen D-J, Kwan S-Y, Wong T-T, Wu Z-A, Ho L-T (2007) Plastic phase-locking and magnetic mismatch response to auditory deviants in temporal lobe epilepsy. Cereb Cortex 17:2516–2525

    Article  PubMed  Google Scholar 

  • Luck SJ (2005) An introduction to the event-related potential technique. MIT Press, Cambridge

    Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694

    Google Scholar 

  • Mazaheri A, Jensen O (2006) Posterior alpha activity is not phase-reset by visual stimuli. Proc Natl Acad Sci USA 103:2948–2952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Min B-K, Busch NA, Debener S, Kranczioch C, Hanslmayr S, Engel AK, Herrmann CS (2007) The best of both worlds: phase-reset of human EEG alpha activity and additive power contribute to ERP generation. Int J Psychophysiol 65:58–68

    Article  PubMed  Google Scholar 

  • Mishra J, Martínez A, Schroeder CE, Hillyard SA (2012) Spatial attention boosts short-latency neural responses in human visual cortex. Neuroimage 59:1968–1978

    Article  PubMed Central  PubMed  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  Google Scholar 

  • Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37:127–152

    Article  CAS  PubMed  Google Scholar 

  • Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41:103–146

    Article  CAS  PubMed  Google Scholar 

  • Rahn E, Başar E (1993) Prestimulus EEG-activity strongly influences the auditory evoked vertex response: a new method for selective averaging. Int J Neurosci 69:207–220

    Article  CAS  PubMed  Google Scholar 

  • Risner ML, Aura CJ, Black JE, Gawne TJ (2009) The Visual Evoked Potential is independent of surface alpha rhythm phase. Neuroimage 45:463–469

    Article  PubMed  Google Scholar 

  • Roye A, Schröger E, Jacobsen T, Gruber T (2010) Is my mobile ringing? Evidence for rapid processing of a personally significant sound in humans. J Neurosci 30:7310–7313

    Article  CAS  PubMed  Google Scholar 

  • Samar VJ, Bopardikar A, Rao R, Swartz K (1999) Wavelet analysis of neuroelectric waveforms: a conceptual tutorial. Brain Lang 66:7–60

    Article  CAS  PubMed  Google Scholar 

  • Sauseng P, Klimesch W, Gruber WR, Hanslmayr S, Freunberger R, Doppelmayr M (2007) Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience 146:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Schadow J, Lenz D, Thaerig S, Busch NA, Fründ I, Herrmann CS (2007) Stimulus intensity affects early sensory processing: sound intensity modulates auditory evoked gamma-band activity in human EEG. Int J Psychophysiol 65:152–161

    Article  PubMed  Google Scholar 

  • Schadow J, Lenz D, Dettler N, Fründ I, Herrmann CS (2009) Early gamma-band responses reflect anticipatory top-down modulation in the auditory cortex. Neuroimage 47:651–658

    Article  PubMed  Google Scholar 

  • Schneider TR, Debener S, Oostenveld R, Engel AK (2008) Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming. Neuroimage 42:1244–1254

    Article  PubMed  Google Scholar 

  • Schürmann M, Başar-Eroglu C, Kolev V, Başar E (1995) A new metric for analyzing single-trial event-related potentials (ERPs): application to human visual P300 delta response. Neurosci Lett 197:167–170

    Article  PubMed  Google Scholar 

  • Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13:121–134

    CAS  PubMed  Google Scholar 

  • Stefanics G, Hangya B, Hernádi I, Winkler I, Lakatos P, Ulbert I (2010) Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J Neurosci 30:13578–13585

    Article  CAS  PubMed  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–1188

    Article  CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254

    CAS  PubMed  Google Scholar 

  • Thut G, Schyns PG, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2:170

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Dijk H, Schoffelen J-M, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28:1816–1823

    Article  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Vecchiato G, De Vico Fallani F, Astolfi L, Toppi J, Cincotti F, Mattia D, Salinari S, Babiloni F (2010) The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment. J Neurosci Methods 191:283–289

    Article  CAS  PubMed  Google Scholar 

  • Wacker M, Witte H (2013) Time–frequency techniques in biomedical signal analysis: a tutorial review of similarities and differences. Methods Inf Med 52(5):371–373

    Google Scholar 

  • Walter WG, Cooper R, Alridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384

    Article  CAS  PubMed  Google Scholar 

  • Wetter S, Polich J, Murphy C (2004) Olfactory, auditory, and visual ERPs from single trials: no evidence for habituation. Int J Psychophysiol 54:263–272

    Article  PubMed  Google Scholar 

  • Widmann A, Gruber T, Kujala T, Tervaniemi M, Schröger E (2007) Binding symbols and sounds: evidence from event-related oscillatory gamma-band activity. Cereb Cortex 17:2696–2702

    Article  PubMed  Google Scholar 

  • Yabe H, Sutoh T, Matsuoka T, Asai R, Hiruma T, Sato Y, Iwasa H, Kaneko S (2005) Transient gamma-band response is dissociated from sensory memory as reflected by MMN. Neurosci Lett 380:80–82

    Article  CAS  PubMed  Google Scholar 

  • Yordanova J, Kolev V, Kirov R (2012) Brain oscillations and predictive processing. Front Psychol 3:416

    Article  PubMed Central  PubMed  Google Scholar 

  • Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY (2008) Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58:429–441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Deutsche Forschungsgemeinschaft (DFG), grants RA 2357/1-1 (S.R., D.S.) and SFB/TRR 31 (C.S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph S. Herrmann.

Additional information

This is one of several papers published together in Brain Topography in the “Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, C.S., Rach, S., Vosskuhl, J. et al. Time–Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain Topogr 27, 438–450 (2014). https://doi.org/10.1007/s10548-013-0327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0327-5

Keywords

Navigation