Skip to main content
Log in

The Influence of Genotype on Phenotype in Contemporary Research into the Genetic Causes of Schizophrenia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present review was to consider different approaches to establishing genotype–phenotype relationships in schizophrenia taking account of schizophrenia-specific mediating factors in the light of contemporary advances in human genome research. A variety of structural elements of the genome are shown to be able to contribute to formation of the phenotype. Genotype–phenotype relationships can be mediated by epigenetic effects, which can have different origins – from the currently best studied methylation of defined sites in the genome to recently developing concepts of remote regulatory genomic elements in the origination of schizophrenia. The transition to more in-depth investigations of the relationship between genotype and phenotype is relevant to the current period of molecular genetic research in schizophrenia. The concept of “phenotype” as applied to schizophrenia clearly does not reduce to a causal reflection of changes in the structure of a particular gene, but is the product of a set of the actions of environmental factors and epigenetic changes influencing gene expression, taking account of tissue specificity and the level of cell stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Orgogozo, B. Morizot, and A. Martin, “The differential view of genotype–phenotype relationships,” Front. Genet., 6, 179 (2015), https://doi.org/10.3389/fgene.2015.00179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Chawla, C. Nagy, and G. Turecki, “Chromatin profiling techniques: Exploring the chromatin environment and its contributions to complex traits,” Int. J. Mol. Sci., 22, 7612 (2021), https://doi.org/10.3390/ijms22147612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Coelewij and D. Curtis, “Mini-review: Update on the genetics of schizophrenia,” Ann. Hum. Genet., 82, No. 5, 239–243 (2018), https://doi.org/10.1111/ahg.12259.

    Article  PubMed  Google Scholar 

  4. A. K. Golov, N. V. Kondratyev, G. P. Kostyuk, and V. E. Golimbet, “Novel approaches for identifying the molecular background of schizophrenia,” Cells, 9, No. 1, 246 (2020), https://doi.org/10.3390/cells9010246.

  5. D. Das, K. Feuer, M. Wahbeh, et al., “Modeling psychiatric disorder biology with stem cells,” Curr. Psychiatry Rep., 22, No. 5, 24 (2020), https://doi.org/10.1007/s11920-020-01148-1.

  6. B. Larijani, P. P. Roudsari, M. Hadavandkhani, et al., “Stem cellbased models and therapies: a key approach into schizophrenia treatment,” Cell Tissue Bank, 22, No. 2, 207–223 (2021), https://doi.org/10.1007/s10561-020-09888-3.

    Article  PubMed  Google Scholar 

  7. O. V. Evgrafov, C. Armoskus, B. B. Wrobel, et al., “Gene expression in patient-derived neural progenitors implicates WNT5A signaling in the etiology of schizophrenia,” Biol. Psychiatry, 88, No. 3, 236–247 (2020), https://doi.org/10.1016/j.biopsych.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  8. A. I. Kryukov, M. P. Valikhov, G. Yu. Tsarapkin, et al., “Preparation of neurospheres and neuronal progenitor cells from the olfactory epithelium,” Vestn. Otorinolaringol., 84, No. 1, 31–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. S. C. Trifu, B. Kohn, A. Vlasie, and B. E. Patrichi, “Genetics of schizophrenia (review),” Exp. Ther. Med., 20, No. 4, 3462–3468 (2020), https://doi.org/10.3892/etm.2020.8973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. M. L. Baselmans, L. Yengo, W. van Rheenen, and N. R. Wray, “Risk in relatives, heritability, SNP-based heritability, and genetic correlations in psychiatric disorders: A review,” Biol. Psychiatry, 89, No. 1, 11–19 (2021), https://doi.org/10.1016/j.biopsych.2020.05.034.

    Article  CAS  PubMed  Google Scholar 

  11. M. Schneider, M. Debbané, A. S. Bassett, et al., “Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome,” Am. J. Psychiatry, 171, No. 6, 627–639 (2014), https://doi.org/10.1176/appi.ajp.2013.13070864.

    Article  PubMed  PubMed Central  Google Scholar 

  12. P. Srikanth, K. Han, D. G. Callahan, et al., “Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate,” Cell Rep., 12, No. 9, 1414–1429 (2015), https://doi.org/10.1016/j.celrep.2015.07.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Steinberg, S. Gudmundsdottir, G. Sveinbjornsson, et al., “Truncating mutations in RBM12 are associated with psychosis,” Nat. Genet., 49, No. 8, 1251–1254 (2017), https://doi.org/10.1038/ng.3894.

    Article  CAS  PubMed  Google Scholar 

  14. J. H. Thygesen, A. Presman, J. Harju-Seppänen, et al., “Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study,” Mol. Psychiatry, (2020), https://doi.org/10.1038/s41380-020-0820-7.

  15. S. G. Schwab and D. B. Wildenauer, “Genetics of psychiatric disorders in the GWAS era: an update on schizophrenia,” Eur. Arch. Psychiatry Clin. Neurosci., 263, Suppl. 2, 147–154 (2013), https://doi.org/10.1007/s00406-013-0450-z.

    Article  Google Scholar 

  16. A. Takata, B. Xu, I. Ionita-Laza, et al., “Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene,” Neuron, 82, No. 4, 773–780 (2014), https://doi.org/10.1016/j.neuron.2014.04.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Singh, M. I. Kurki, D. Curtis, et al., “Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders,” Nat. Neurosci., 19, No. 4, 571–577 (2016), https://doi.org/10.1038/nn.4267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Rees, J. Han, J. Morgan, et al., “De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia,” Nat. Neurosci., 23, No. 2, 179–184 (2020), https://doi.org/10.1038/s41593-019-0565-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. J. Malherbe, J. L. Roos, Jr., R. Ehlers, et al., “Phenotypic features of patients with schizophrenia carrying de novo gene mutations: a pilot study,” Psychiatry Res., 225, No. 1–2, 108–114 (2015), https://doi.org/10.1016/j.psychres.2014.10.024.

    Article  CAS  PubMed  Google Scholar 

  20. A. Morozova, Y. Zorkina, K. Pavlov, et al., “Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with clinical features of youth-onset schizophrenia,” Front. Psychiatry, 10, 830 (2019), https://doi.org/10.3389/fpsyt.2019.00830.

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. M. Purcell, N. R. Wray, et al., “Common polygenic variation contributes to risk of schizophrenia and bipolar disorder,” Nature, 460, No. 7256, 748–752 (2009), https://doi.org/10.1038/nature08185.

    Article  CAS  PubMed  Google Scholar 

  22. H. C. So and P. C. Sham, “Exploring the predictive power of polygenic scores derived from genome-wide association studies: a study of 10 complex traits,” Bioinformatics, 33, No. 6, 886–892 (2017), https://doi.org/10.1093/bioinformatics/btw745.

    Article  CAS  PubMed  Google Scholar 

  23. Schizophrenia Working Group of the Psychiatric Genomics Consortium, “Biological insights from 108 schizophrenia-associated genetic loci,” Nature, 511, No. 7510, 421–427 (2014), https://doi.org/10.1038/nature13595.

    Article  CAS  PubMed Central  Google Scholar 

  24. S. Ripke, T. R. Walters, et al., “Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv preprint (2020), https://doi.org/10.1101/2020.09.12.20192922.

  25. E. Agerbo, P. F. Sullivan, B. J. Vilhjálmsson, et al., “Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: A Danish population-based study and meta-analysis,” JAMA Psychiatry, 72, No. 7, 635–641 (2015), https://doi.org/10.1001/jamapsychiatry.2015.0346.

    Article  PubMed  Google Scholar 

  26. D. O. Perkins, L. Olde Loohuis, J. Barbee, et al., “Polygenic risk score contribution to psychosis prediction in a target population of persons at clinical high risk,” Am. J. Psychiatry, 177, No. 2, 155–163 (2020), https://doi.org/10.1176/appi.ajp.2019.18060721.

    Article  PubMed  Google Scholar 

  27. K. L. Musliner, M. D. Krebs, C. Albiñana, et al., “Polygenic risk and progression to bipolar or psychotic disorders among individuals diagnosed with unipolar depression in early life,” Am. J. Psychiatry, 177, No. 10, 936–943 (2020), https://doi.org/10.1176/appi.ajp.2020.19111195.

    Article  PubMed  Google Scholar 

  28. A. R. Docherty, A. A. Moscati, and A. H. Fanous, “Cross-disorder psychiatric genomics,” Curr. Behav. Neurosci. Rep., 3, No. 3, 256–263 (2016), https://doi.org/10.1007/s40473-016-0084-3.

  29. V. Anttila, B. Bulik-Sullivan, et al., “Analysis of shared heritability in common disorders of the brain,” Science, 360, No. 6395, eaap8757 (2018), https://doi.org/10.1126/science.aap8757.

  30. E. Rees, H. D. J. Creeth, H. G. Hwu, et al., “Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations,” Nat. Commun., 12, No. 1, 5353 (2021), https://doi.org/10.1038/s41467-021-25532-4.

  31. Q. Chen, D. Li, W. Jin, et al., “Research progress on the correlation between epigenetics and schizophrenia,” Front. Neurosci., 15, 688727 (2021), https://doi.org/10.3389/fnins.2021.688727.

  32. A. Cariaga-Martinez and R. Alelú-Paz, “Rethinking the epigenetic framework to unravel the molecular pathology of schizophrenia,” Int. J. Mol. Sci., 18, No. 4, 790 (2017), https://doi.org/10.3390/ijms18040790.

  33. B. Khavari and M. J. Cairns, “Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers,” Cells, 9, No. 8, 1837 (2020), https://doi.org/10.3390/cells9081837.

  34. A. F. Pardiñas, P. Holmans, A. J. Pocklington, et al., “Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection,” Nat. Genet., 50, No. 3, 381–389 (2018), https://doi.org/10.1038/s41588-018-0059-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Gusev, S. H. Lee, G. Trynka, et al., “Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases,” Am. J. Hum. Genet., 95, No. 5, 535–552 (2014), https://doi.org/10.1016/j.ajhg.2014.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Shlyueva, G. Stampfel, and A. Stark, “Transcriptional enhancers: From properties to genome-wide predictions,” Nat. Rev. Genet., 15, 272–286 (2014), https://doi.org/10.1038/nrg3682.

    Article  CAS  PubMed  Google Scholar 

  37. C. M. Alberini, “Transcription factors in long-term memory and synaptic plasticity,” Physiol. Rev., 89, No. 1, 121–145 (2009), https://doi.org/10.1152/physrev.00017.2008.

    Article  CAS  PubMed  Google Scholar 

  38. N. G. Skene, J. Bryois, T. E. Bakken, et al., “Genetic identification of brain cell types underlying schizophrenia,” Nat. Genet., 50, 825–833 (2018), https://doi.org/10.1038/s41588-018-0129-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Radua, V. Ramella-Cravaro, J. P. A. Ioannidis, et al., “What causes psychosis? An umbrella review of risk and protective factors,” World Psychiatry, 17, No. 1, 49–66 (2018), https://doi.org/10.1002/wps.20490.

    Article  PubMed  PubMed Central  Google Scholar 

  40. A. Zwicker, E. M. Denovan-Wright, and R. Uher, “Gene-environment interplay in the etiology of psychosis,” Psychol. Med., 15, 1–12 (2018), https://doi.org/10.1017/S003329171700383X.

    Article  Google Scholar 

  41. S. Tomassi and S. Tosato, “Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma,” Neurosci. Biobehav. Rev., 83, 226–237 (2017), https://doi.org/10.1016/j.neubiorev.2017.10.018.

    Article  CAS  PubMed  Google Scholar 

  42. M. Lynall, B. Soskic, H. J. J. Schwartzentruber, et al., “Genetic variants associated with cross-disorder and disorder-specific risk for psychiatric disorders are enriched at epigenetically active sites in peripheral lymphoid cells,” medRxiv, preprint, Aug. 8, 2021, https://doi.org/10.1101/2021.08.04.21261606.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Golimbet.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 1, Iss. 2, pp. 20–25, January, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golimbet, V.E., Kostyuk, G.P. The Influence of Genotype on Phenotype in Contemporary Research into the Genetic Causes of Schizophrenia. Neurosci Behav Physi 52, 849–854 (2022). https://doi.org/10.1007/s11055-022-01308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01308-1

Keywords

Navigation