Skip to main content
Log in

Genetics of psychiatric disorders in the GWAS era: an update on schizophrenia

  • Review
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The influence of genetic factors in the development of schizophrenia has been convincingly demonstrated by family, twin, and adoption studies. The statistical construct of heritability is generally used for estimating the liability due to genetic factors. Heritability estimates for schizophrenia are reported to be between 60 and 80 %. Due to the technical achievements in whole genome-wide association studies, dissection of the underlying genetic factors was intensified recently, resulting in the conclusion that schizophrenia is essentially a polygenic, complex disorder. Most likely more than 100 genes, each with small effect size, contribute to disease risk. A most recent multi-stage genome-wide association study (Ripke et al. in Nat Genet 2013) identified 22 risk loci and estimated that 8,300 independent single-nucleotide polymorphisms contributed to the risk accounting collectively for 32 % in liability. In addition to this polygenic, complex inheritance, there is also strong indication that in some patients a deletion or insertion of a larger chromosomal region [so-called copy number variation (CNV)] might play a crucial role in pathogenesis. This could be specifically important in sporadic cases with schizophrenia, since a higher frequency of de novo mutations has been associated with these CNVs. Further studies, combining much larger sample sizes as well as application of newer technology, such as deep sequencing technologies will be necessary in order to obtain a more comprehensive understanding of the genetic foundations of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192

    Article  PubMed  Google Scholar 

  2. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–239

    Article  PubMed  CAS  Google Scholar 

  3. Gottesman II, Laursen TM, Bertelsen A, Mortensen PB (2010) Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry 67:252–257

    Article  PubMed  Google Scholar 

  4. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  5. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) Plink: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  6. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  7. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  8. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  9. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  Google Scholar 

  10. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  11. Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S, Hillmer A, Toncheva D, Owen MJ, O’Donovan MC (2009) A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry 14:796–803

    Article  PubMed  CAS  Google Scholar 

  12. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM, Kucherlapati R, Malhotra AK (2007) Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 12:572–580

    Article  PubMed  CAS  Google Scholar 

  13. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, Shianna KV, Yoon W, Kasperaviciute D, Gennarelli M, Strittmatter WJ, Bonvicini C, Rossi G, Jayathilake K, Cola PA, McEvoy JP, Keefe RS, Fisher EM, St Jean PL, Giegling I, Hartmann AM, Moller HJ, Ruppert A, Fraser G, Crombie C, Middleton LT, St Clair D, Roses AD, Muglia P, Francks C, Rujescu D, Meltzer HY, Goldstein DB (2009) A genome-wide investigation of snps and cnvs in schizophrenia. PLoS Genet 5:e1000373

    Article  PubMed  Google Scholar 

  14. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer CC, Howie B, Leung HT, Hartmann AM, Moller HJ, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG, Williams NM, Giegling I, Iwata N, Ikeda M, Darvasi A, Shifman S, He L, Duan J, Sanders AR, Levinson DF, Gejman PV, Cichon S, Nothen MM, Gill M, Corvin A, Rujescu D, Kirov G, Owen MJ, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Cloninger CR (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40:1053–1055

    Article  PubMed  Google Scholar 

  15. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, Kendler KS, Li T, O’Donovan M, O’Neill FA, Owen MJ, Walsh D, Weinberger DR, Sun C, Flint J, Darvasi A (2008) Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 4:e28

    Article  PubMed  Google Scholar 

  16. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS, Wagner M, Lee S, Wright FA, Zou F, Liu W, Downing AM, Lieberman J, Close SL (2008) Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 13:570–584

    Article  PubMed  CAS  Google Scholar 

  17. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, Riley B, Paunio T, Pulver AE, Irmansyah Holmans PA, Escamilla M, Wildenauer DB, Williams NM, Laurent C, Mowry BJ, Brzustowicz LM, Maziade M, Sklar P, Garver DL, Abecasis GR, Lerer B, Fallin MD, Gurling HM, Gejman PV, Lindholm E, Moises HW, Byerley W, Wijsman EM, Forabosco P, Tsuang MT, Hwu HG, Okazaki Y, Kendler KS, Wormley B, Fanous A, Walsh D, O’Neill FA, Peltonen L, Nestadt G, Lasseter VK, Liang KY, Papadimitriou GM, Dikeos DG, Schwab SG, Owen MJ, O’Donovan MC, Norton N, Hare E, Raventos H, Nicolini H, Albus M, Maier W, Nimgaonkar VL, Terenius L, Mallet J, Jay M, Godard S, Nertney D, Alexander M, Crowe RR, Silverman JM, Bassett AS, Roy MA, Merette C, Pato CN, Pato MT, Roos JL, Kohn Y, Amann-Zalcenstein D, Kalsi G, McQuillin A, Curtis D, Brynjolfson J, Sigmundsson T, Petursson H, Sanders AR, Duan J, Jazin E, Myles-Worsley M, Karayiorgou M, Lewis CM (2009) Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 14:774–785

    Article  PubMed  CAS  Google Scholar 

  18. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, Giegling I, Ikeda M, Wood J, Lencz T, Hultman C, Lichtenstein P, Thiselton D, Maher BS, Malhotra AK, Riley B, Kendler KS, Gill M, Sullivan P, Sklar P, Purcell S, Nimgaonkar VL, Kirov G, Holmans P, Corvin A, Rujescu D, Craddock N, Owen MJ, O’Donovan MC (2011) Fine mapping of znf804a and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 16:429–441

    Article  PubMed  CAS  Google Scholar 

  19. Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO, Fanous AH, Vladimirov V, O’Neill FA, Walsh D, Kendler KS (2010) Replication of association between schizophrenia and znf804a in the Irish case–control study of schizophrenia sample. Mol Psychiatry 15:29–37

    Article  PubMed  CAS  Google Scholar 

  20. Steinberg S, Mors O, Borglum AD, Gustafsson O, Werge T, Mortensen PB, Andreassen OA, Sigurdsson E, Thorgeirsson TE, Bottcher Y, Olason P, Ophoff RA, Cichon S, Gudjonsdottir IH, Pietilainen OP, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Athanasiu L, Suvisaari J, Lonnqvist J, Paunio T, Hartmann A, Jurgens G, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Breuer R, Moller HJ, Giegling I, Glenthoj B, Rasmussen HB, Mattheisen M, Bitter I, Rethelyi JM, Sigmundsson T, Fossdal R, Thorsteinsdottir U, Ruggeri M, Tosato S, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Walshe M, Bramon E, Vassos E, Li T, Fraser G, Walker N, Toulopoulou T, Yoon J, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Peltonen L, Rujescu D, Collier DA, Stefansson H, St Clair D, Stefansson K (2011) Expanding the range of znf804a variants conferring risk of psychosis. Mol Psychiatry 16:59–66

    Article  PubMed  CAS  Google Scholar 

  21. Xiao B, Li W, Zhang H, Lv L, Song X, Yang Y, Yang G, Jiang C, Zhao J, Lu T, Zhang D, Yue W (2011) To the editor: association of znf804a polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Res 190:379–381

    Article  PubMed  CAS  Google Scholar 

  22. Zhang F, Chen Q, Ye T, Lipska BK, Straub RE, Vakkalanka R, Rujescu D, St Clair D, Hyde TM, Bigelow L, Kleinman JE, Weinberger DR (2011) Evidence of sex-modulated association of znf804a with schizophrenia. Biol Psychiatry 69:914–917

    Article  PubMed  CAS  Google Scholar 

  23. Zhang R, Lu SM, Qiu C, Liu XG, Gao CG, Guo TW, Valenzuela RK, Deng HW, Ma J (2011) Population-based and family-based association studies of znf804a locus and schizophrenia. Mol Psychiatry 16:360–361

    Article  PubMed  CAS  Google Scholar 

  24. Zhang R, Yan JD, Valenzuela RK, Lu SM, Du XY, Zhong B, Ren J, Zhao SH, Gao CG, Wang L, Guo TW, Ma J (2012) Further evidence for the association of genetic variants of znf804a with schizophrenia and a meta-analysis for genome-wide significance variant rs1344706. Schizophr Res 141:40–47

    Article  PubMed  Google Scholar 

  25. Li M, Luo XJ, Xiao X, Shi L, Liu XY, Yin LD, Diao HB, Su B (2011) Allelic differences between Han Chinese and Europeans for functional variants in znf804a and their association with schizophrenia. Am J Psychiatry 168:1318–1325

    PubMed  Google Scholar 

  26. Schanze D, Ekici AB, Gawlik M, Pfuhlmann B, Reis A, Stober G (2011) Evaluation of risk loci for schizophrenia derived from genome-wide association studies in a German population. Am J Med Genet B Neuropsychiatr Genet 156:198–203

    Article  PubMed  CAS  Google Scholar 

  27. Zaharie A, Ergul E, Ozel MD, Miclutia IV, Stanculete MF, Sazci A (2012) Znf804a rs1344706 variant and schizophrenia in a Romanian population from Cluj Napoca. Genet Test Mol Biomarkers 16:1135–1137

    Article  PubMed  CAS  Google Scholar 

  28. Schwab SG, Kusumawardhani AA, Dai N, Qin W, Wildenauer MD, Agiananda F, Amir N, Antoni R, Arsianti T, Asmarahadi A, Diatri H, Djatmiko P, Irmansyah I, Khalimah S, Kusumadewi I, Kusumaningrum P, Lukman PR, Mustar L, Nasrun MW, Naswati S, Prasetiyawan P, Semen GM, Siste K, Tobing H, Widiasih N, Wiguna T, Wulandari WD, Benyamin B, Wildenauer DB (2013) Association of rs1344706 in the znf804a gene with schizophrenia in a case/control sample from Indonesia. Schizophr Res 147:46–52

    Article  PubMed  Google Scholar 

  29. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    PubMed  CAS  Google Scholar 

  30. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R, Gejman PV (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757

    PubMed  CAS  Google Scholar 

  31. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Rethelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jonsson EG, Terenius L, Agartz I, Petursson H, Nothen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747

    PubMed  CAS  Google Scholar 

  32. Consortium SPG-WASG (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    Article  Google Scholar 

  33. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N (2008) Collaborative genome-wide association analysis supports a role for ank3 and cacna1c in bipolar disorder. Nat Genet 40:1056–1058

    Article  PubMed  CAS  Google Scholar 

  34. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, Kim Y, Lee SH, Magnusson PK, Sanchez N, Stahl EA, Williams S, Wray NR, Xia K, Bettella F, Borglum AD, Bulik-Sullivan BK, Cormican P, Craddock N, de Leeuw C, Durmishi N, Gill M, Golimbet V, Hamshere ML, Holmans P, Hougaard DM, Kendler KS, Lin K, Morris DW, Mors O, Mortensen PB, Neale BM, O’Neill FA, Owen MJ, Milovancevic MP, Posthuma D, Powell J, Richards AL, Riley BP, Ruderfer D, Rujescu D, Sigurdsson E, Silagadze T, Smit AB, Stefansson H, Steinberg S, Suvisaari J, Tosato S, Verhage M, Walters JT, Levinson DF, Gejman PV, Laurent C, Mowry BJ, O’Donovan MC, Pulver AE, Schwab SG, Wildenauer DB, Dudbridge F, Shi J, Albus M, Alexander M, Campion D, Cohen D, Dikeos D, Duan J, Eichhammer P, Godard S, Hansen M, Lerer FB, Liang KY, Maier W, Mallet J, Nertney DA, Nestadt G, Norton N, Papadimitriou GN, Ribble R, Sanders AR, Silverman JM, Walsh D, Williams NM, Wormley B, Arranz MJ, Bakker S, Bender S, Bramon E, Collier D, Crespo-Facorro B, Hall J, Iyegbe C, Jablensky A, Kahn RS, Kalaydjieva L, Lawrie S, Lewis CM, et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. doi:10.1038/ng.2742

  35. Levinson DF, Shi J, Wang K, Oh S, Riley B, Pulver AE, Wildenauer DB, Laurent C, Mowry BJ, Gejman PV, Owen MJ, Kendler KS, Nestadt G, Schwab SG, Mallet J, Nertney D, Sanders AR, Williams NM, Wormley B, Lasseter VK, Albus M, Godard-Bauche S, Alexander M, Duan J, O’Donovan MC, Walsh D, O’Neill A, Papadimitriou GN, Dikeos D, Maier W, Lerer B, Campion D, Cohen D, Jay M, Fanous A, Eichhammer P, Silverman JM, Norton N, Zhang N, Hakonarson H, Gao C, Citri A, Hansen M, Ripke S, Dudbridge F, Holmans PA (2012) Genome-wide association study of multiplex schizophrenia pedigrees. Am J Psychiatry 169:963–973

    Article  PubMed  Google Scholar 

  36. Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, Nurnberger JI, Ripke S, Santangelo S, Sullivan PF (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    Article  PubMed  CAS  Google Scholar 

  37. Lee SH, DeCandia TR, Ripke S, Yang J, Sullivan PF, Goddard ME, Keller MC, Visscher PM, Wray NR (2012) Estimating the proportion of variation in susceptibility to schizophrenia captured by common snps. Nat Genet 44:247–250

    Article  PubMed  CAS  Google Scholar 

  38. Bassett AS, Chow EW, Husted J, Weksberg R, Caluseriu O, Webb GD, Gatzoulis MA (2005) Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet A 138:307–313

    Article  PubMed  Google Scholar 

  39. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40:880–885

    Article  PubMed  CAS  Google Scholar 

  40. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, Georgieva L, Grozeva D, Fjodorova M, Wollerton R, Rees E, Nikolov I, van de Lagemaat LN, Bayes A, Fernandez E, Olason PI, Bottcher Y, Komiyama NH, Collins MO, Choudhary J, Stefansson K, Stefansson H, Grant SG, Purcell S, Sklar P, O’Donovan MC, Owen MJ (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17:142–153

    Article  PubMed  CAS  Google Scholar 

  41. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, Cichon S, Corvin A, Gary S, Gershon ES, Gill M, Karayiorgou M, Kelsoe JR, Krastoshevsky O, Krause V, Leibenluft E, Levy DL, Makarov V, Bhandari A, Malhotra AK, McMahon FJ, Nothen MM, Potash JB, Rietschel M, Schulze TG, Sebat J (2011) High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 72:951–963

    Article  PubMed  CAS  Google Scholar 

  42. Rees E, Kirov G, O’Donovan MC, Owen MJ (2012) De novo mutation in schizophrenia. Schizophr Bull 38:377–381

    Article  PubMed  Google Scholar 

  43. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, Gupta N, Sklar P, Sullivan PF, Moran JL, Hultman CM, Lichtenstein P, Magnusson P, Lehner T, Shugart YY, Price AL, de Bakker PI, Purcell SM, Sunyaev SR (2012) Exome sequencing and the genetic basis of complex traits. Nat Genet 44:623–630

    Article  PubMed  CAS  Google Scholar 

  44. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O, Thibodeau P, Bachand I, Bao JY, Tong AH, Lin CH, Millet B, Jaafari N, Joober R, Dion PA, Lok S, Krebs MO, Rouleau GA (2011) Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43:860–863

    Article  PubMed  CAS  Google Scholar 

  45. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA, Karayiorgou M (2012) De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 44:1365–1369

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

This article is part of the supplement “Bridging the gap between Neurobiology and Psychosocial Medicine.” This supplement was not sponsored by outside commercial interests. It was funded by the German Association for Psychiatry and Psychotherapy (DGPPN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle G. Schwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, S.G., Wildenauer, D.B. Genetics of psychiatric disorders in the GWAS era: an update on schizophrenia. Eur Arch Psychiatry Clin Neurosci 263 (Suppl 2), 147–154 (2013). https://doi.org/10.1007/s00406-013-0450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-013-0450-z

Keywords

Navigation