Skip to main content

Advertisement

Log in

Main Biochemical Aspects of the Pathogenesis of Depression. Part II

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article discusses studies of the pathophysiological bases of the depressive state reflecting the significance of the third component of signal transmission in the pathogenesis of depression. Published data are summarized and the characteristics of tryptophan metabolism, impairments to serotonin and noradrenaline metabolism, and dysfunction of serotoninergic, noradrenergic, and dopaminergic neurotransmission in depression are discussed. The role of neurotrophins as first messengers regulating cellular functional activity is analyzed. Impairments to neurotrophin functions lead to a shift between the processes of proliferation and apoptosis towards the latter, which causes a reduction in neurogenesis and the development of neurodegeneration in pathological states, particularly depressive disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Borodinova, A. B. Zyuzina, and P. M. Balaban, “The role of atypical protein kinases in maintaining long-term memory and synaptic plasticity,” Biokhimiya, No. 2, 372 (2017).

  2. O. S. Brusov, M. I. Faktor, and F. B. Katasonov, “Structural and functional changes in the brain in emotional disorders: the bases of the neurocirculatory and neurotrophic hypotheses of depression,” Zh. Nevrol. Psikhiat., 7, 83 (2012).

    Google Scholar 

  3. O. A. Gomazkov, Neurogenesis as an Adaptive Function of the Brain, Ikar, Moscow (2013).

    Google Scholar 

  4. O. A. Gomazkov, “Neurogenesis as an organizing function of the adult brain. Is there sufficient evidence,” Usp. Sovr. Biol., 136, No. 3, 227 (2016).

    Google Scholar 

  5. O. A. Gomazkov, “Signal molecules as regulators of neurogenesis in the adult brain,” Neirokhimiya, 30, 1 (2013).

    Google Scholar 

  6. G. A. Grigor’yan, N. N. Dygalo, A. B. Gekht, et al., “Molecular and cellular mechanisms of depression. The role of glucocorticoids, cytokines, neurotransmitters, and trophic factors in the genesis of depressive disorders,” Usp. Fiziol. Nauk., 45, No. 2, 3 (2014).

    Google Scholar 

  7. E. E. Dubinina, Metabolic Products of Oxygen in the Functional Activity of Cells (life and death, creation and destruction), Medical Press, Moscow (2006).

    Google Scholar 

  8. E. E. Dubinina, L. V. Shchedrina, and G. E. Mazo, “Main biochemical aspects of the pathogenesis of depression. Part I,” Usp. Fiziol. Nauk., No. 1, 28 (2018).

  9. E. E. Dubinina, L. V. Shchedrina, G. E. Mazo, et al., “Neurogenesis and neurodegeneration processes in depressive disorders,” Psikhich. Zdorov., 122, No. 7, 29 (2016).

    Google Scholar 

  10. E. E. Dubinina, L. V. Shchedrina, N. G. Neznanov, et al., “Oxidative stress and its influence on the functional activity of cells in Alzheimer’s disease,” Biomed. Khim., No. 1, 57 (2015).

  11. E. V. Dubynina and O. V. Dolotov, “Transcription factor CREB and memory formation processes,” Neirokhimiya, 26, No. 3, 181 (2009).

    CAS  Google Scholar 

  12. N. D. Eshchenko, Biochemistry of Mental and Nervous Diseases, St. Petersburg State University, St. Petersburg (2004).

    Google Scholar 

  13. T. V. Zhilyaeva and L. N. Kasimova, “Impairments to one-carbon metabolism,” in: Depression and the Risk of Developing Somatic Diseases, N. G. Neznanov et al. (eds.), Specialist Medical Books Publisher, Moscow (2018).

  14. T. V. Zhilyaeva, V. I. Larionova, and G. E. Mazo, “Pterins as potential substances for overcoming therapeutic resistance in schizophrenia,” Sovremen. Ter. Psikhich. Rasstr., No. 1, 2 (2018).

  15. G. Kaplan and B. Sédok, Clinical Psychiatry, Geotar Medicine, Moscow (1998).

    Google Scholar 

  16. E. D. Kas’yanov and G. E. Mazo, “A clinical case of hyperhomocysteinemia and recurrent depressive disorder,” Farmakogenet. Farmakogenom., No. 2, 53 (2018).

  17. E. D. Kas’yanov and G. E. Mazo, “Functioning of the hypothalamo-hypophyseal-adrenal axis in depression: current state of the problem,” Psikhich. Zdorov., No. 8, 27 (2017).

  18. N. K. Popova, T. V. Il’chibaeva, and V. S. Naumenko, “Neurotrophic factors (BDNF, GDNF) and the serotoninergic system of the brain,” Biokhimiya, 82, No. 3, 449 (2017).

    Google Scholar 

  19. A. S. Tiganov, G. I. Kopeiko, O. S. Brusov, and T. P. Klyushnik, “Progress in studies of the pathogenesis and treatment of endogenous depression,” Zh. Nevrol. Psikhiat., 11, 65 (2012).

    Google Scholar 

  20. M. G. Uzbekov, and E. Yu. Misionzhnik, “Nonspecific endogenous intoxication syndrome as an integral component of the pathogenesis of mental disorders,” Ross. Psikhiat. Zh., 4, 56 (2000).

    Google Scholar 

  21. J. R. Albani, “Motions of tryptophan residues in asialylated human alpha 1-acid glycoprotein,” Biochim. Biophys. Acta, 1291, No. 3, 215 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. S. J. Allen, J. J. Watson, D. K. Shoemark, et al., “GDNF, NGF and BDNF as therapeutic options for neurodegeneration,” Pharmacol. Ther., 138, No. 2, 155 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. F. Angelucci, S. Brene, and A. A. Mathe, “BDNF in schizophrenia depression and corresponding animal models,” Mol. Psychiatry, 10, No. 4, 345 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. F. Artigas, “Serotonin receptors involved in antidepressant effects,” Pharmacol. Ther., 137, 119 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. A. E. Autry and L. M. Monteggia, “Brain-derived neurotrophic factor and neuropsychiatric disorders,” Pharmacol. Res., 64, 238 (2012).

    CAS  Google Scholar 

  26. H. Baran, K. Staniek, B. Kepplinger, et al., “Kynurenines and the respiratory parameters on rat heart mitochondria,” Life Sci., 72, No. 10, 1103 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. N. M. Barnes and T. A. Sharp, “A review of central 5-HT receptors and their junction,” Neuropsychopharmacology, 38, 1083 (1999).

    CAS  Google Scholar 

  28. G. L. Barrett, “The p75 neurotrophin receptor and neuronal apoptosis,” Prog. Neurobiol., 61, 205 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. R. Barrientos, D. V. Sprunger, S. Campeau, et al., “Brain-derived neurotrophic factor mRNA downregulation induced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist,” Neuroscience, 121, 847 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. M. J. Berridge, Cell Signaling Biology. Module 1. Introduction (2012), https://doi.org/https://doi.org/10.1042/csb0001001.

  31. M. J. Berridge, Cell Signaling Biology. Module 2. Cell Signaling Pathway (2012), https://doi.org/https://doi.org/10.1042/csb0001002.

  32. M. J. Berridge, Cell Signaling Biology. Module 4. Sensors and Effectors, https://doi.org/https://doi.org/10.1042/csb00010 (2012).

  33. M. J. Berridge, Cell Signaling Biology. Module 9. Cell Cycle and Proliferation (2012), https://doi.org/https://doi.org/10.1042/csb0001009

  34. E. Beurel, S. F. Grieco, and R. S. Jope, “Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases,” Pharmacol. Ther., 148, 114 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. J. M. Brezun and A. Daszuta, “Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats,” Neuroscience, 89, 999 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. A. Brunet, A. Bonni, M. J. Zigmond, et al., “Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor,” Cell, 96, No. 6, 857 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. C. G. Causing, A. Gloster, R. Aloyz, et al., “Synaptic innervation density is regulated by neuron-derived BDNF,” Neuron, 18, No. 2, 257 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. M. V. Chao and M. Botwell, “Neurotrophins: to cleave or not to cleave,” Neuron, 33, 9 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. C. T. Chu, D. J. Levinthal, S. M. Kulich, et al., “Oxidative neuronal injury. The dark side of ERK1/2,” Eur. J. Biochem., 271, No. 11, 2060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Cole, S. Frame, and P. Cohen, “Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event,” Biochem. J., 377, No. 1, 249 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. T. G. Connor, N. O. Star, J. B. Sullivan, and A. Harkin, “Introduction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma,” Neurosci. Lett., 441, No. 1, 29 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. A. Currais, T. Hortobagyi, and S. Soriano, “The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease,” Aging (Albany NY), 1, No. 4, 363 (2009).

    Article  CAS  Google Scholar 

  43. M. P. Czech, “PIP2 and PIP3 complex roles at the cell surface,” Cell, 100, 603 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. R. Dantzer, J. C. O’Connor, M. A. Lawson, and K. W. Kelley, “Inflammation- associated depression: From serotonin to kynurenine,” Psychoneuroendocrinology, 36, 426 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. S. R. Datta, “Akt phosphorylation of BAD couples survival to cell-machinery,” Cell, 91, 231 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. L. Del Peso, M. Gonzalez-Garcia, C. Page, et al., “Interleukin-3- induced phosphorylation of BAD through the protein kinase,” Science, 278, 687 (1997).

    Article  PubMed  Google Scholar 

  47. G. Di Paolo and P. De Camilli, “Phosphoinositides in cell regulation and membrane dynamics. Review Article,” Nature, 443, 651 (2006).

    Article  PubMed  Google Scholar 

  48. R. S. Duman, “Role of neurotrophic factors in the etiology and treatment of mood disorders,” Neuromolecular Med., 5, 11 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. R. S. Duman and L. M. Monteggia, “A neurotrophic model for stress related mood disorders,” Biol. Psychiatry, 59, 1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. S. Dunham, J. F. Deakin, F. Miyajima, et al., “Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains,” J. Psychiatr. Res., 43, 1175 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. F. Esposito, G. Chirico, N. Montesano Gesualdi, et al., “Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires Src activity,” J. Biol. Chem., 278, No. 23, 20,828 (2003).

    Article  CAS  Google Scholar 

  52. M. Fava and D. Mischoulon, “Folate in depression: efficacy, safety, differences in formulations, and clinical issues,” J. Clin. Psychiatry, 70, No. 5, 12 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. B. S. Fernandes, C. S. Gama, K. M. Cereser, et al., “Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis,” J. Psychiatr. Res., 45, 995 (2011).

    Article  PubMed  Google Scholar 

  54. A. J. M. Filho, C. N. C. Lima, S. N. N. Vasconcelos, et al., “IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 80, 234 (2018).

    Article  Google Scholar 

  55. V. Gabbay, R. G. Klein, Y. Katz, et al., “The possible role of the kynurenine pathway in adolescent depression with melancholic features,” J. Child Psychol. Psychiatry, 51, No. 8, 935 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. R. H. Goodman and S. Smolik, “CBP/p300 in cell growth, transformation, and development,” Genes Dev., 14, No. 13, 1553 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. R. G. Graeff, P. S. Guimaraes, T. G. De Andrade, and J. F. Deakin, “Role of SHT in stress, anxiety and depression,” Pharm. Biochem. Behav., 54, 129 (1998).

    Article  Google Scholar 

  58. R. S. Grant, Y. Naif, M. Espinola, et al., “IDO after INF-gamma activated astroglia: a role in improving cell viability during oxidative stress,” Redox Rep., 5, 101 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. G. J. Guillemin, S. J. Kerr, G. A. Smythe, et al., “Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection,” J. Neurochem., 78, No. 4, 842 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. G. J. Guillemin, G. Smythe, O. Tokikawa, et al., “Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons,” Glia, 49, 15 (2005).

    Article  PubMed  Google Scholar 

  61. K. Z. Guyton, Y. Liu, M. Gorospe, et al., “Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury,” J. Biol. Chem., 271, No. 8, 4138 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. J. Haase and E. Brown, “Integrating the monoamine, neurotrophin and cytokine hypothesis of depression – A central role for the serotonin transporter,” Pharmacol. Ther., 147, 1 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. P. T. Hawkins, K. E. Anderson, K. Davidson, and L. R. Stephens, “Signalling through class I PI3Ks in mammalian cells,” Biochem. Soc. Trans., 34, 647 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. C. H. Heldin, “Protein tyrosine kinase receptor signaling overview,” R. A. Bradshaw and E. A. Dennis (eds.), Academic Press, San Diego (2003).

    Chapter  Google Scholar 

  65. F. Henn, B. Vollmayer, and A. Sartorius, “Mechanism of depression: the role of neurogenesis,” Drug Discov. Today Dis. Mech., 1, 407 (2004).

    Article  CAS  Google Scholar 

  66. S. Herold, R. Jagasia, K. Merz, et al., “CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis,” Mol. Cell. Neurosci., 46, No. 1, 79 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. I. Hindmarch, “Beyond the monoamine hypothesis: mechanisms, molecules and methods,” Eur. Psychiatry, 17, No. 3, 294 (2002).

    Article  PubMed  Google Scholar 

  68. E. J. Huang and L. F. Peichardt, “Neurotrophins: roles in neuronal development and function,” Annu. Rev. Neurosci., 24, 677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. A. Ianari, R. Gallo, M. Palma, et al., “Specific role for p300/CREBbinding protein-associated factor activity in E2F1 stabilization in response to DNA damage,” J. Biol. Chem., 279, No. 29, 30830 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. F. Karege, G. Vaudan, M. Schwald, et al., “Neurotrophin levels in postmortem brains of suicide and the effects of antemortem diagnosis and psychotropic drugs,” Brain Res. Mol. Brain Res., 136, 29 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. K. Karg, M. Burmeister, K. Shedden, et al., “The serotonin transporter promoter variant (5-HTTLPR), stress and depression meta-analysis revisited: Evidence of genetic moderation,” Arch. Gen. Psychiatry, 68, 444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. K. Kobayashi, K. Hayashi, and M. Sono, “Effects of tryptophan and pH on the kinetics of superoxide radical binding to indoleamine 2,3-dioxygenase studied by pulse radiolysis,” J. Biol. Chem., 264, No. 26, 15280 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. R. Kobrosly and E. van Wijngaarden, “Associations between immunologic, inflammatory, and oxidative stress markers with severity of depressive symptoms: An analysis of the 2005–2006 National Health and Nutrition Examination Survey,” Neurotoxicology, 31, 126 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. M. Korte, P. Carroll, E. Wolf, et al., “Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor,” Proc. Natl. Acad. Sci. USA, 92, 8856 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. V. Krishnan and E. J. Nestler, “The molecular neurobiology of depression,” Nature, 455, 894 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M. Kubera, E. Obuchowicz, L. Goehler, et al., “In animal models, psychosocial stress-induced (neuro) inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 744 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. A. V. Kulikov, V. S. Naumenko, A. S. Tsybko, et al., “The role of glycoprotein gp 130 in serotonin mediator system in mouse brain,” Mol. Biol. (Mosk.), 44, No. 4, 801 (2010).

    Article  CAS  Google Scholar 

  78. R. Kuruvilla, H. Ye, and D. D. Ginty, “Spatially and functionally district roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons,” Neuron, 27, 499 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. A. Laugeray, J. M. Launay, J. Callebert, et al., “Peripheral and cerebral metabolic abnormalities of the tryptophan-kynurenine pathway in a murine model of major depression,” Behav. Brain Res., 210, No. 1, 84 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. F. S. Lee, A. N. Kim, G. Khursigara, et al., “The uniqueness of being a neurotrophin receptor,” Curr. Opin. Neurobiol., 11, 281 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. B. Leonard and M. Maes, “Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression,” Neurosci. Biobehav. Rev., 36, 764 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. D. C. Lie, S. A. Colamarino, H. J. Song, et al., “Wnt signaling regulates adult hippocampal neurogenesis,” Nature, 437, No. 7063, 1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. J. M. Loftis, M. Huckans, and B. J. Morasco, “Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies,” Neurobiol. Dis., 37, 519 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Ann. Rev. Cell Dev. Biol., 20, 781 (2004).

    Article  CAS  Google Scholar 

  85. B. Lu, “BDNF and activity-dependent synaptic modulation,” Learn. Mem., 10, No. 2, 86 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  86. B. Lu, P. T. Pang, and N. H. Woo, “The yin and yang of neurotrophin action,” Neurosci., 6, 603 (2005).

    CAS  Google Scholar 

  87. G. M. Mackay, C. M. Forrest, J. Christofides, et al., “Kynurenine metabolites and inflammation markers in depressed patients treated with fluoxetine or counselling,” Clin. Exp. Pharmacol. Physiol., 36, No. 4, 425 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. M. Maes, “Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, No. 3, 664 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. M. Maes, “Evidence for an immune response in major depression: a review and hypothesis,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 19, 11 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. M. Maes, “Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression,” Neurosci. Biobehav. Rev., 36, 764 (2012).

    Article  PubMed  Google Scholar 

  91. M. Maes, “The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress and leaky gut as new targets for adjunctive treatments in depression,” Neuroendocrinol. Lett., 29, No. 3, 287 (2008).

    CAS  PubMed  Google Scholar 

  92. M. Maes, P. Galecki, Y. S. Chang, and M. Berk, “A review on the oxidative and nitrosative stress [O&NS] pathways in major depression and their possible contribution to the neurodegenerative processes in that illness,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, No. 3, 676 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. M. Maes, P. Galecki, R. Verkerk, and W. Rief, “Somatization, but not depression, is characterized by disorders in the tryptophan catabolite (TRYCAT) pathway, indicating increased indoleamine 2,3-dioxygenase and lowered kynurenine aminotransferase activity,” Neuroendocrinol. Lett., 32, No. 3, 264 (2011).

    CAS  PubMed  Google Scholar 

  94. M. Maes, B. F. Leonard, A. M. Myint, et al., “The new 5-HT hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, No. 3, 702 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. M. Maes and H. V. Meltzer, “The serotonin hypothesis of major depression. Selected chapters on mood disorders,” in: The Fourth Generation of Progress, F. Bloom and D. Kupfer (ed.), Raven Press, USA (1995).

  96. M. Maes, L. Michaylova, M. Kubera, et al., “Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in (ME/CFS) due to cardiovascular disorder, Neuroendocrinol. Lett., 30, No. 4, 470 (2009).

    CAS  PubMed  Google Scholar 

  97. M. Maes, L. Michaylova, and J. C. Leunis, “Increased serum IgM antibodies directed against phosphatidyl inositol in chronic fatigue syndrome (CFS) and major depression: evidence that an IgMmediated immune response against Pi is one factor underpinning the comorbidity between both CFS and depression,” Neuroendocrinol. Lett., 28, No. 6, 861 (2007).

    PubMed  Google Scholar 

  98. M. Maes, I. Mihaylova, M. D. Ruyter, et al., “The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression – and other conditions characterized by tryptophan depletion induced by inflammation,” Neuroendocrinol. Lett., 28, No. 6, 826 (2007).

    CAS  PubMed  Google Scholar 

  99. M. Maes, R. Verkerk, S. Bonaccorso, et al., “Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation,” Life Sci., 71, No. 16, 1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. M. Maes, R. Yirmyia, J. Noraberg, et al., “The inflammatory and neurodegenerative [I&ND] hypothesis of depression: leads for future research and new drug developments in depression,” Metab. Brain Dis., 24, 27 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. M. Majdan and F. Miller, “Neuronal life and death decisions: functional antagonism between the Trk and p75 neurotrophin receptors,” Int. J. Dev. Neurosci., 17, 153 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. G. S. Malhi, G. B. Parker, and J. Greenwood, “Structural and functional models of depression: from sub-types to substrates,” Acta Psychiatr. Scand., 111, 94 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. S. Malynn, A. Campos-Torres, P. Moynagh, and J. Haase, “The pro-inflammatory cytokine TNF-alfa regulates the activity and expression of the serotonin transporter (SERT) in astrocytes,” Neurochem. Res., 38, 694 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. L. A. Mamounas, M. E. Blue, J. A. Siuciak, and C. A. Altar, “Brainderived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain,” J. Neurosci., 15, 7929 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders,” Trends Neurosci., 10, 589 (2004).

    Article  Google Scholar 

  106. T. B. Meier, W. C. Drevets, B. E. Wurfel, et al., “Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder,” Brain Behav. Immun., 53, 39 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. A. L. Miller, “The methylation, neurotransmitter, and antioxidant connections between folate and depression,” Altern. Med. Rev, 13, No. 3, 216 (2008).

    PubMed  Google Scholar 

  108. A. A. Moustafa, H. H. Doaa, and M. E. Abeer, et al., “Homocysteine levels in schizophrenia and affective disorders focus on cognition,” Front. Behav. Neurosci., 8, 343 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. N. Muller and M. J. Schwarz, “COX-2 inhibition in schizophrenia and major depression,” Curr. Pharm. Des., 14, 1452 (2008).

    Article  PubMed  Google Scholar 

  110. N. Muller and M. J. Schwarz, “The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression,” Mol. Psychiatry, 12, 988 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. D. L. Murphy, M. A. Fox, K. R. Timpano, et al., “How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems,” Neuropharmacology, 55, 932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. A. M. Myint, Y. K. Kim, R. Verkerk, et al., “Kynurenine pathway in major depression: evidence of impaired neuroprotection,” J. Affect. Disord., 98, No. 1–2, 143 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. V. S. Naumenko, E. M. Kondaurova, and N. K. Popova, “Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains,” Neuroscience, 214, 59 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. W. J. Nelson and R. Nusse, “Convergence of Wnt, beta-catenin, and cadherin pathways,” Science, 303, No. 5663, 1483 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. A. Nykjser, R. Lee, K. Teng, et al., “Sortilin is essential for proNGF-induced neuronal cell death,” Nature, 427, 843 (2004).

    Article  Google Scholar 

  116. O. Ogawa, H. G. Lee, X. Zhu, et al., “Increased p27, an essential component of cell cycle control, in Alzheimer’s disease,” Aging Cell, 2, No. 2, 105 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. T. Okajima, Y. Kawata, and K. Hamaguchi, “Chemical modification of tryptophan residues and stability changes in proteins,” Biochemistry, 29, No. 39, 9168 (1990).

    Article  CAS  PubMed  Google Scholar 

  118. K. O. Ozlem, K. C. Doberauer, K. C.Vadodaria, et al., “Prosperorelated homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has stage-specific role in adult hippocampal neurogenesis,” Proc. Natl. Acad. Sci. USA, 108, No. 14, 5807 (2011).

    Article  Google Scholar 

  119. A. A. Piccinni, “Del Debbio, and P. Medda, et al., “Plasma Brain- Derived Neurotrophic Factor in treatment-resistant depressed patients receiving electroconvulsive therapy,” Eur. Neuropsychopharmacol., 19, 349 (2009).

  120. H. Plein and M. Berk, “Changes in the platelet intracellular calcium response to serotonin in patients with major depression treated with electroconvulsive therapy: state or trait marker status,” Int. Clin. Psychopharmacol., 15, No. 2, 93 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. H. Plein, M. Berk, S. Eppel, and N. Butkow, “Augmented platelet calcium uptake in response to serotonin stimulation in patients with major depression measured using Mn2+ influx and 45Ca2+ uptake,” Life Sci., 66, No. 5, 423 (2000).

    Google Scholar 

  122. A. M. Polter, S. Yang, and R. S. Jope, “Functional significance of glycogen synthase kinase-3 regulation by serotonin,” Cell. Signal., 24, 265 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. L. Ruan, B. Wui-Man Lau, and J. Wang, et al., “Neurogenesis in neurological and psychiatric diseases and brain injury: From bench to bedside,” Prog. Neurobiol., 115, 116 (2014).

    Article  PubMed  Google Scholar 

  124. P. Rumajogee, A. Madeira, D. Verge, et al., “Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms,” J. Neurochem., 83, 1525 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. M. T. Sapko, P. Guidetti, P. Yu, et al., “Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington’s disease,” Exp. Neurol., 197, No. 1, 31 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. J. H. Schafer, T. A. Glass, K. I. Bolla, et al., “Homocysteine and cognitive function in a population–based study of older adults,” J. Am. Geriatr. Soc., 53, 381 (2005).

    Article  PubMed  Google Scholar 

  127. L. Schiller, M. Donix, M. Jähkel, and J. Oehler, “Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 30, 492 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. P. F. Schuck, A. Tonin, G. da Costa Ferreira, et al., “Kynurenines impair energy metabolism in rat cerebral cortex,” Cell. Mol. Neurobiol., 27, No. 1, 147 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. S. Sen, R. Duman, and G. Sanacora, “Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Metaanalyses and implications,” Biol. Psychiatry, 64, 527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. P. J. Shah, M. F. Glabus, G. M. Goodwin, and K. P. Ebmeier, “Chronic, treatment-resistant depression and right fronto-striatal atrophy,” Br. J. Psychiatry, 180, 434 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. M. V. Sofroniew, C. L. Howe, and W. C. Mobley, “Nerve growth factor signaling, neuroprotection, and neural repair,” Annu. Rev. Neurosci., 24, 1217 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. D. Stauffer, B. Chang, and J. Huang, et al., “p300/CREB-binding protein interacts with ATR and is required for the DNA replication checkpoint,” J. Biol. Chem., 282, No. 13, 9678 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. K. J. Swartz, M. J. During, A. Freese, and M. F. Beal, “Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors,” J. Neurosci., 10, No. 9, 2965 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. M. Talowska, A. Orzechowska, J. Szemraj, et al., “Manganese superoxide dismutase gene expression and cognitive functions in recurrent depressive disorder,” Neuropsychology, 70, No. 1, 23 (2014).

    Google Scholar 

  135. L. Tapia-Aruncibia, F. Rage, L. Givalous, and S. Aruncibia, “Physiology of BDNF: focus on hypothalamic function,” Front. Neuroendocrinol., 25, 77 (2004).

    Article  Google Scholar 

  136. R. G. Tavares, C. I. Tasca, and C. E. Santos, et al., “Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes,” Neurochem. Int., 40, 621 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. A. Terracciano, M. Lobina, M. G. Piras, et al., “Neuroticism, depressive symptoms, and serum BDNF,” Psychosom. Med., 73, No. 8, 638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. G. E. Torres, R. R. Gainetdinov, and M. G. Caron, “Plasma membrane monoamine transporters: Structure, regulation and function,” Nat. Rev. Neurosci., 4, 13 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. E. Undine, L. Lang, K. Günther, et al., “Higher BDNF concentrations in the hippocampus and cortex of an aggressive mouse strain,” Behav. Brain Res., 197, 246 (2009).

    Article  Google Scholar 

  140. I. Vincent, C. I. Pae, and J. L. Hallows, “The cell cycle and human neurodegenerative disease,” Prog. Cell Cycle Res., 5, 31 (2003).

    PubMed  Google Scholar 

  141. F. L. Watson, “Neurotrophins use the Erk5 pathway to mediate a retrograde survival response,” Nature Neurosci., 4, 981 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. M. C. Wichers and M. Maes, “The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression,” J. Psychiatry Neurosci., 29, No. 1, 11 (2004).

    PubMed  PubMed Central  Google Scholar 

  143. Xingbing Huang, Xiong Huang, et al., “Association of serum BDNF levels with psychotic symptom in chronic patients with treatment-resistant depression in a Chinese Han population,” Psychiatry Res., 257, 279 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. C. B. Zhu, R. D. Blakely, and W. A. Hewlett, “The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters,” Neuropsychopharmacology, 31, No. 10, 2121 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. C. B. Zhu, K. M. Lindler, A. W. Owens, et al., “Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters,” Neuropsychopharmacology, 35, 2510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. L. S. Zweifel, R. Kuruvilla, and D. D. Ginty, “Functions and mechanisms of retrograde neurotrophin signaling,” Neurosci., 6, 615 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Dubinina.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 52, No. 1, pp. 31–48, January–March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinina, E.E., Schedrina, L.V. & Mazo, G.E. Main Biochemical Aspects of the Pathogenesis of Depression. Part II. Neurosci Behav Physi 51, 1330–1343 (2021). https://doi.org/10.1007/s11055-021-01198-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01198-9

Keywords

Navigation