Skip to main content
Log in

Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Widening and deepening our understanding of how the brain works requires constant improvements not only in methods of recording neuron activity, but also improvements in experimental approaches to activating individual cells and their compartments. Optogenetic stimulation methods using finely focused light to trigger the opening of the light-activated depolarizing cation channel rhodopsin-2 (ChR2) have become widely used in recent years. Current molecular biological methods provide for the genetic expression of ChR2 in different cell types, which, along with the ability to carry out electrophysiological experiments with reproducible patterns of activation and stable levels of ChR2 expression, have developed optogenetics into an effective method for gathering physiological data previously unavailable to conventional methods. We report here the use of local activation of axons using an optogenetic stimulation method. Experiments were performed in combination with recording the electrical activity of neurons using the patch-clamp method, as well as laser scanning confocal microscopy. Experiments used the transgenic mouse strain Thy1-ChR2-YFP, in which ChR2 is expressed in only a small proportion of pyramidal cells. Direct studies of the effects of functional activity in the proximal branches of pyramidal neuron axons in layer 5 of the visual cortex and hippocampal field CA1 on the shape and generation of action potentials were carried out. We also describe methodological advances and means of solving problems encountered in the optogenetic stimulation of the axons of pyramidal neurons in the central nervous system of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aseev, N. A., Nikitin, E. S., Roshchin, M. V., et al., “Biolistic delivery of voltage-dependent dyes into cells in living brain slices from mammals for optical recording of neuron activity,” Zh. Vyssh. Nerv. Deyat., 62, 100–107 (2012).

    CAS  Google Scholar 

  • Bähner, F., Weiss, E. K., Birke, G., et al., “Cellular correlate of assembly formation in oscillating hippocampal networks in vitro,” Proc. Natl. Acad. Sci. USA, 108, No. 35, E607–E616 (2011).

    Article  PubMed  Google Scholar 

  • Buzsáki, G., “Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning,” Hippocampus, 25, 1073–1188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsaki, G., “Hippocampal sharp waves: their origin and significance,” Brain Res., 398, No. 2, 242–252 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki, G., “Two-stage model of memory trace formation: a role for “noisy” brain states,” Neuroscience, 31, 551–570 (1989).

    Article  PubMed  Google Scholar 

  • Debanne, D. and Boudkkazi, S., “New insights in information processing in the axon,” in: New Aspects of Axonal Structure and Function

  • D. Feldmeyer and J. H. R. Lübke (eds.), Springer, Boston, MA (2010), pp. 55–83.

  • Foust, A. J., Yu, Y., Popovic, M., et al., “Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons,” J. Neurosci., 31, No. 43 15490–15498 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groh, A., Meyer, H. S., Schmidt, E. F., et al., “Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area,” Cereb. Cortex, 20, No. 4, 826–836 (2010).

    Article  PubMed  Google Scholar 

  • Grubb, M. S. and Burrone, J., “Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability,” Nature, 465, No. 7301, 1070–1074 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kole, M. H., “First node of Ranvier facilitates high-frequency burst encoding,” Neuron, 71, No. 4, 671–682 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Kole, M. H., Letzkus, J. J., and Stuart, G. J., “Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy,” Neuron, 55, No. 4, 633–647 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Maier, N., Nimmrich, V., and Draguhn, A., “Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices,” J. Physiol., 550, No. 3, 873–887 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikitin, E. S., Bal, N. V., Malyshev, A., et al., “Encoding of high frequencies improves with maturation of action potential generation in cultured neocortical neurons,” Front. Cell. Neurosci., 11, 28 (2017).

  • Nikitin, E. S., Malyshev, A. Yu., Balaban, P. M., and Volgushev, M. A., “Physiological aspects of the use of a the Hodgkin-Huxley model of action potential generation for neurons in invertebrates and vertebrates,” Zh. Vyssh. Nerv. Deyat., 3, 279–288 (2016).

    Google Scholar 

  • Palmer, L. M. and Stuart, G. J., “Site of action potential initiation in layer 5 pyramidal neurons,” J. Neurosci., 26, No. 6, 1854–1863 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Popovic, M. A., Foust, A. J., McCormick, D. A., and Zecevic, D., “The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study,” J. Physiol., 589, No. 17, 4167–4187 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romand, S., Wang, Y., Toledo-Rodriguez, M., and Markram, H., “Morphological development of thick-tufted layer V pyramidal cells in the rat somatosensory cortex,” Front. Neuroanat., 5, 5 (2011).

  • Thome, C., Kelly, T., Yanez, A., et al., “Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons,” Neuron, 83, No. 6, 1418–1430 (2014).

    Article  PubMed  CAS  Google Scholar 

  • Vladimirov, N., Tu, Y., and Traub, R. D., “Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study,” Eur. J. Neurosci., 38, No. 10, 3435–3447 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G., Wyskiel, D. R., Yang, W., et al., “An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits,” Nat. Protoc., 10, No. 3, 397–412 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, Y., Maureira, C., Liu, X., and McCormick, D., “P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons,” J. Neurosci., 30, No. 35, 11858–11 869 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Nikitin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 5, pp. 101–108, September–October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, E.S., Roshchin, M.V., Ierusalimsky, V.N. et al. Optogenetic Stimulation of the Axons of Visual Cortex and Hippocampus Pyramidal Neurons in Living Brain Slices. Neurosci Behav Physi 49, 227–232 (2019). https://doi.org/10.1007/s11055-019-00719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00719-x

Keywords

Navigation