Skip to main content

Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

  • 1129 Accesses

Abstract

Optogenetics allows control of neural activity in genetically targeted neuron populations by light. Optogenetic control of individual neurons in neural circuits would enable powerful, causal investigations of neural connectivity and function at single-cell level and provide insights into how neural circuits operate. Such single-cell resolution optogenetics in neuron populations requires precise sculpting of light and subcellular targeting of optogenetic molecules. Here we describe a group of methods for single-cell resolution optogenetics in neuron cultures, in mouse brain slices, and in mouse cortex in-vivo, via patterned light and soma-targeted optogenetic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  2. Kohler M, Hirschberg B, Bond CT et al (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science (80- ) 273:1709–1714

    Article  CAS  Google Scholar 

  3. Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  4. Wietek J, Beltramo R, Scanziani M et al (2015) An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo. Sci Rep 5:14807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inoue K, Ono H, Abe-Yoshizumi R et al (2013) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678

    Article  PubMed  CAS  Google Scholar 

  6. Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michel H, Oesterhelt D (1976) Light-induced changes of the pH gradient and the membrane potential in H. halobium. FEBS Lett 65:175–178

    Article  CAS  PubMed  Google Scholar 

  8. Inoue K, Ito S, Kato Y et al (2016) A natural light-driven inward proton pump. Nat Commun 7:13415

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han X, Boyden ES, Huhn W et al (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang F, Wang L-P, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  11. Häusser M (2014) Optogenetics: the age of light. Nat Methods 11:1012–1014

    Article  PubMed  CAS  Google Scholar 

  12. Dombeck DA, Harvey CD, Tian L et al (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li C-YT, Poo M-M, Dan Y (2009) Burst spiking of a single cortical neuron modifies global brain state. Science 324:643–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Houweling AR, Brecht M (2008) Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451:65–68

    Article  CAS  PubMed  Google Scholar 

  15. Ronzitti E, Ventalon C, Canepari M et al (2017) Recent advances in patterned photostimulation for optogenetics. J Opt 19:113001

    Article  CAS  Google Scholar 

  16. Emiliani V, Cohen AE, Deisseroth K et al (2015) All-optical interrogation of neural circuits. J Neurosci 35:13917–13926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bovetti S, Fellin T (2015) Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Methods 241:66–77

    Article  PubMed  Google Scholar 

  18. Shemesh OA, Tanese D, Zampini V et al (2017) Temporally precise single-cell-resolution optogenetics. Nat Neurosci 20:1796–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu C, Ivanova E, Zhang Y et al (2013) rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One 8:e66332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim ST, Antonucci DE, Scannevin RH et al (2000) A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron 25:385–397

    Article  CAS  PubMed  Google Scholar 

  21. Baker CA, Elyada YM, Parra A et al (2016) Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. Elife 5:e14193

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren Z, Riley NJ, Garcia EP et al (2003) Multiple trafficking signals regulate Kainate receptor KA2 subunit surface expression. J Neurosci 23:6608–6616

    Article  PubMed  PubMed Central  Google Scholar 

  24. Valluru L, Xu J, Zhu Y et al (2005) Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors. J Biol Chem 280:6085–6093

    Article  CAS  PubMed  Google Scholar 

  25. Mardinly AR, Oldenburg IA, Pégard NC et al (2018) Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21:881–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Govorunova EG, Sineshchekov OA, Janz R et al (2015) Neuroscience. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahn M, Gibor L, Malina KC-K et al (2017) High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat Commun 9:4125

    Article  CAS  Google Scholar 

  28. Pisano F, Pisanello M, De Vittorio M et al (2019) Single-cell micro- and nano-photonic technologies. J Neurosci Methods 325:108355

    Article  CAS  PubMed  Google Scholar 

  29. Miyamoto D, Murayama M (2016) The fiber-optic imaging and manipulation of neural activity during animal behavior. Neurosci Res 103:1–9

    Article  PubMed  Google Scholar 

  30. Accanto N, Chen I-W, Ronzitti E et al (2019) Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Sci Rep 9:7603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jennings JH, Kim CK, Marshel JH et al (2019) Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature 565:645–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aharoni D, Khakh BS, Silva AJ, et al (2019), All the light that we can see: a new era in miniaturized microscopy

    Google Scholar 

  33. Aravanis AM, Wang L-P, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156

    Article  PubMed  Google Scholar 

  34. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic Surveillants of brain parenchyma in vivo. Science (80- ) 308:1314

    Article  CAS  Google Scholar 

  35. Schmidt S, Horch K, Normann R (1993) Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J Biomed Mater Res 27:1393–1399

    Article  CAS  PubMed  Google Scholar 

  36. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18

    Article  PubMed  Google Scholar 

  37. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104

    Article  PubMed  Google Scholar 

  38. Tromberg BJ, Shah N, Lanning R et al (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marshel JH, Kim YS, Machado TA et al (2019) Cortical layer-specific critical dynamics triggering perception. Science (80- ) 365:eaaw5202

    Article  CAS  PubMed Central  Google Scholar 

  40. Sheng M, Sabatini BL, Südhof TC (2012) Synapses and Alzheimer’s disease. Cold Spring Harb Perspect Biol 4:10

    Article  CAS  Google Scholar 

  41. Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci. 2018 Dec 21;12:470

    Google Scholar 

  42. Mehta P, Kreeger L, Wylie D. C, Pattadkal J. J, Lusignan T, Davis M. J, Turi G. F., Li, W. K., Whitmire, M. P., Chen, Y., Kajs, B. L., Seidemann, E., Priebe, N. J., Losonczy, A., & Zemelman, B. V. (2019). Functional Access to Neuron Subclasses in Rodent and Primate Forebrain. Cell reports, 26(10), 2818–2832.e8. https://doi.org/10.1016/j.celrep.2019.02.011

  43. Lutz C, Otis T, DeSars V et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hernandez O, Papagiakoumou E, Tanese D et al (2016) Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7:11928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Papagiakoumou E, Ronzitti E, Emiliani V (2020) Scanless two-photon excitation with temporal focusing. Nat Methods 17:571–581

    Article  CAS  PubMed  Google Scholar 

  46. Papagiakoumou E, Bègue A, Leshem B et al (2013) Functional patterned multiphoton excitation deep inside scattering tissue. Nat Photonics 7:274–278

    Article  CAS  Google Scholar 

  47. Oron D, Papagiakoumou E, Anselmi F et al (2012) Two-photon optogenetics. Prog Brain Res 196:119–143

    Article  CAS  PubMed  Google Scholar 

  48. Hernandez O, Guillon M, Papagiakoumou E et al (2014) Zero-order suppression for two-photon holographic excitation. Opt Lett 39:5953–5956

    Article  PubMed  Google Scholar 

  49. Oheim M, Beaurepaire E, Chaigneau E et al (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111:29–37

    Article  CAS  PubMed  Google Scholar 

  50. Marshel JH, Kim YS, Machado TA et al (2019) Cortical layer–specific critical dynamics triggering perception. Science (80- ) 365:eaaw5202

    Article  CAS  PubMed Central  Google Scholar 

  51. Cetin A, Komai S, Eliava M et al (2007) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1:3166–3173

    Article  CAS  Google Scholar 

  52. Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term , high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:19–22

    Article  CAS  Google Scholar 

  53. Kitamura K, Judkewitz B, Kano M et al (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67

    Article  CAS  PubMed  Google Scholar 

  54. Chen TW, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen I-W, Ronzitti E, Lee BR et al (2019) In vivo sub-millisecond two-photon optogenetics with temporally focused patterned light. J Neurosci 39:1785–1718

    Google Scholar 

Download references

Acknowledgments

We thank the IHU FOReSIGHT grant (Grant P-ALLOP3-IHU-000), the National Institute of Health (Grant NIH 1UF1NS107574 - 01), the “Agence National de la Recherche” ANR (project PRCI), and the Axa research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Or A. Shemesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Linghu, C., Chen, IW., Tanese, D., Zampini, V., Shemesh, O.A. (2022). Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics