Skip to main content
Log in

Local Protein Synthesis in Dendritic Terminals and Its Regulation in Normal Conditions and during Plastic Changes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review discusses the features and basic mechanisms of regulation of compartmentalized protein synthesis in dendrites. The current literature on this question is analyzed. Results of numerous experiments using molecular-biological, cytological, and physiological methods are presented. The review also contains information on various nervous system diseases for which a connection with impairments to protein translation in dendrites has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aakalu, G., Smith, W. E., Nguyen, N., et al., “Dynamic visualization of local protein synthesis in hippocampal neurons,” Neuron, 30, No. 2, 489–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Agranoff, B., W., Davis R. E., and Brink, J. J., “Chemical studies on memory fixation in goldfish,” Brain Res., 1, 303–309 (1966).

  • Ait Ghezala, H., Jolles, B., Salhi, S., et al., “Translation termination efficiency modulates ATF4 response by regulating ATF4 mRNA translation at 5’ short ORFs,” Nucl. Acids Res., 40, No. 19, 9557–9570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, R. and Kedersha, N., “Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation,” Cell Stress Chaperones, 7, No. 2, 213–221 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angenstein, F., Evans, A. M., Settlage, R. E., et al., “A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons,” J. Neurosci., 22, No. 20, 8827–8837 (2002).

    CAS  PubMed  Google Scholar 

  • Banerjee, S., Neveu, P., and Kosik, K. S., “A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation,” Neuron, 64, 871–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bodian, D., “A suggestive relationship of nerve cell RNA and specific synaptic sites,” Proc. Natl. Acad. Sci. USA., 53, 418–425 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramham, C. R. and Wells D. G., “Dendritic mRNA: transport, translation and function,” Nat. Rev. Neurosci., 8, No. 10, 776–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chapman, R. E. and Walter, P., “Translational attenuation mediated by an mRNA intron,” Curr. Biol., 7, 850–859 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Chua, J. J., Schob, C., Rehbein M, et al., “Synthesis of two SAPAP3 isoforms from a single mRNA is mediated via alternative translational initiation,” Sci. Rep., 2, 484 (2012).

  • Costa-Mattioli, M., Gobert, D., Stern, E., et al., “eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory,” Cell, 129, No. 1, 195–206 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dheen S., T., Kaur, C., and Ling, E. A., “Microglial activation and its implications in the brain diseases,” Curr. Med. Chem., 14, No. 11, 1189–1197 (2007).

  • Di Prisco, G. V., Huang, W., Buffington, S. A., et al., “Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α,” Nat. Neurosci., 17, No. 8, 1073–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  • DuRose, J. B., Scheuner, D., Kaufman, R. J., et al., “Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress,” Mol. Cell Biol., 29, No. 15, 4295–4307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom, T., Muslimov, I. A., Tsokas, P., et al., “Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control,” J. Cell Biol., 207, No. 2, 237–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Maya, S. M., Bauer, K. E., and Kiebler, M. A., “Meet the players: local translation at the synapse,” Front. Mol. Neurosci., 7, 84 (2014).

    Google Scholar 

  • Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N., “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nat. Rev. Genet., 9, No. 2, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Graber, T. E., Hébert-Seropian, S., Khoutorsky, A., et al., “Reactivation of stalled polyribosomes in synaptic plasticity,” Proc. Natl. Acad. Sci. USA., 110, No. 40, 16205–16210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanus, C. and Ehlers, M. D., “Secretory outposts for the local processing of membrane cargo in neuronal dendrites,” Traffic, 9, No. 9, 1437–1445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanus, C., Kochen, L., Tom Dieck, S., et al., “Synaptic control of secretory trafficking in dendrites,” Cell Rep., 7, No. 6, 1771–1778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havik, B., Rokke, H., Bardsen, K., et al., “Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats,” Eur. J. Neurosci., 17, 2679–2689 (2003).

    Article  PubMed  Google Scholar 

  • Heise, C., Gardoni, F., Culotta, L., et al., “Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons,” Front. Cell Neurosci., 8, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez, A. I., Blace, N., Crary, J. F., et al., “Protein kinase Mζ synthesis from a brain mRNA encoding an independent protein kinase Cζ catalytic domain,” J. Biol. Chem., 278, No. 41, 40305–40316 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hernández, A. I., Oxberry, W. C., Crary, J. F., et al., “Cellular and subcellular localization of PKMζ,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369, No. 1633, 20130140 (2013).

  • Jasinska, M., Siucinska, E., Jasek, E., et al., “Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex,” PLOS One, 8, No. 2, e54301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Z., Belforte, L. E., Lu, Y., et al., “eIF2alpha phosphorylation-dependent translation in CA1 pyramidal cells impairs hippocampal memory consolidation without affecting general translation,” J. Neurosci., 30, No. 7, 2582–2594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, M. X., Lorenz, L., and Richter, J. D., “Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein,” Mol. Cell Biol., 26, No. 11, 4277–4287 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel, E. R. and Siegelbaum, S. A., “Cellular mechanisms of implicit memory storage and the biological basis of individuality,” in: Principles of Neural Science, Kandel, E. R. (ed.), McGraw Hill Professional (2013), pp. 1461–1486.

  • Kedersha, N. and Anderson, P., “Stress granules: sites of mRNA triage that regulate mRNA stability and translatability,” Biochem. Soc. Trans., 30, Pt. 6, 963–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Liu-Yesucevitz, L., Bassell, G. J., Gitler, A. D., et al., “Local RNA translation at the synapse and in disease,” J. Neurosci., 31, No. 45, 16086–16093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourenco, M. V., Ferreira S., T., and De Felice, F. G., “Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer’s disease and diabetes,” Prog. Neurobiol., 129, 37–57 (2015).

  • Ma, T., Trinh, M. A., Wexler, A. J., et al., “Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits,” Nat. Neurosci., 16, No. 9, 1299–1305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashiro, K., Dichter, M., and Eberwine, J., “On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning,” Proc. Natl. Acad. Sci. USA., 91, No. 23, 10800–10804 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroz, L. L., Edwards, J. R., Puthanveettil S. V., et al., “Neuronal transcriptome of Aplysia: neuronal compartments and circuitry,” Cell, 127, No. 7, 1453–1467 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mus, E., Hof, P. R., and Tiedge, H., “Dendritic BC200 RNA in aging and in Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA., 104, No. 25, 10,679–10,684 (2007).

    Article  CAS  Google Scholar 

  • Muslimov, I. A., Iacoangeli, A., Brosius, J., and Tiedge, H., “Spatial codes in dendritic BC1 RNA,” J. Cell Biol., 175, No. 3, 427–439 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor, T., Sadleir, K. R., Maus, E., et al., “Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis,” Neuron, 60, No. 6, 988–1009 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostroff, L. E., Fiala, J. C., Allwardt, B., and Harris, K. M., “Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices,” Neuron, 35, 535–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Parlato, R. and Kreiner, G., “Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?” J. Mol. Med. (Berl.), 91, No. 5, 541–547 (2013).

    Article  CAS  Google Scholar 

  • Paschen, W., Hayashi, T., Saito, A., and Chan, P. H., “GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells,” J. Neurochem., 90, No. 3, 694–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pimentel, J. and Boccaccio, G. L., “Translation and silencing in RNA granules: a tale of sand grains,” Front. Mol. Neurosci., 7, 68 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkstaff, J. K., Chappell, S. A., Mauro, V. P., et al., “Internal initiation of translation of five dendritically localized neuronal mRNAs,” Proc. Natl. Acad. Sci. USA., 98, No. 5, 2770–2775 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadleir, K. R., Eimer, W. A., Kaufman, R. J., et al., “Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer’s disease,” PLoS One, 9, No. 7, e101643 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuman, E. M., Dynes, J. L., and Steward, O., “Synaptic regulation of translation of dendritic mRNAs,” J. Neurosci., 26, No. 27, 7143–7146 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., et al., “Pharmacological brake-release of mRNA translation enhances cognitive memory,” Elife, 2, e00498 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Spriggs, K. A., Bushell, M., and Willis, A. E., “Translational regulation of gene expression during conditions of cell stress,” Mol. Cell., 40, No. 2, 228–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Steward, O. and Schaman, E. M., “Compartmentalized synthesis and degradation of proteins in neurons,” Neuron, 40, No. 2, 347–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Steward, O. and Levy, W. B., “Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus,” J. Neurosci., 2, 284–291 (1982).

    CAS  PubMed  Google Scholar 

  • Studtmann, K., Olschläger-Schütt, J., Buck, F., et al., “A non-canonical initiation site is required for efficient translation of the dendritically localized Shank1 mRNA,” PLoS One, 9, No. 2, e88518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton, M. A., “Strategies for exploring local dendritic protein synthesis in synaptic plasticity and memory,” in: Posttranscriptional Regulation in Nervous System Development and Plasticity, Kosik, K. and Baneijee S. (eds.), Society for Neuroscience, Washington, D. C. (2010), pp. 68–76.

    Google Scholar 

  • Tcherkezian, J., Brittis, R. A., Thomas, F., et al., “Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation,” Cell, 141, No. 4, 632–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry, R. D., Masliah, E., Salmon, D. P., et al., “Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment,” Ann. Neurol., 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Tirachinapalli, D. M., Oleynikov, Y., Kelic, S., et al., “Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and β-actin mRNA in dendrites and spines of hippocampal neurons,” J. Neurosci., 23, 3251–3261 (2003).

    Google Scholar 

  • Tongiorgi, E., Righi, M., and Cattaneo, A., “Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons,” J. Neurosci., 17, 9492–9505 (1997).

    CAS  PubMed  Google Scholar 

  • Trinh, M. A., Kaphzan, H., Wek, R. C., et al., “Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility,” Cell Rep., 1, No. 6, 676–688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh, M. A. and Klann, E., “Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory,” Neurobiol. Learn. Mem., 105, 93–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh, M. A., Ma, T., Kaphzan, H., et al., “The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression,” Learn. Mem., 21, No. 5, 298–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troca-Marín, J. A., Alves-Sampaio, A., and Montesinos, M. L., “Deregulated mTOR-mediated translation in intellectual disability,” Prog. Neurobiol., 96, No. 2, 268–282 (2012).

    Article  PubMed  Google Scholar 

  • Unsworth, H., Raguz, S., Edwards, H. J., et al., “mRNA escape from stress granule sequestration is dictated by localization to the endoplasmic reticulum.” FASEB J., 24, No. 9, 3370–3380 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Uttara, B., Singh A. V., Zamboni, P., and Mahajan, R., “Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options,” Curr. Neuropharmacol., 7, No. 1, 65–74 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey, J. P., Vaccani, A., Xie, Y., et al., “Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules,” J. Neurosci., 26, No. 24, 6496–6508 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Iacoangeli, A., Lin, D., et al., “Dendritic BC1 RNA in translational control mechanisms,” J. Cell Biol., 171, No. 5, 811–821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiß, K., Antoniou, A., and Schratt, G., “Non-coding mechanisms of local mRNA translation in neuronal dendrites,” Eurr. J. Cell Biol., pii: S0l719335(15)00057-6 [Epub ahead of print] (2015).

  • Wu, L., Wells, D., Tay, J., et al., “CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses,” Neuron. 21, No. 5, 1129–1139.

  • Xae, S. and Bama, M., “Specialized ribosomes: a new frontier in gene regulation and organismal biology,” Nat. Rev. Mol. Cell Biol., 13, No. 6, 355–369 (2012).

    Article  Google Scholar 

  • Zalfa, F., Giorgi, M., Primerano, B., et al., “The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses,” Cell, 112, No. 3, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zhong, J., Chuang, S. C., Bianchi, R., et al., “Regulatory BC1 RNA and the fragile X mental retardation protein: convergent functionality in brain,” PLoS One, 5, No. 11, e15509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Chesnokova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 66, No. 2, pp. 163–180, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokova, E.A., Kolosov, P.M. Local Protein Synthesis in Dendritic Terminals and Its Regulation in Normal Conditions and during Plastic Changes. Neurosci Behav Physi 47, 595–607 (2017). https://doi.org/10.1007/s11055-017-0440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0440-0

Keywords

Navigation