Skip to main content
Log in

Enhanced Dopamine D1 and D2 Receptor Gene Expression in the Hippocampus of Hypoglycaemic and Diabetic Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoglycaemic coma and brain injury are potential complications of insulin therapy. Hippocampal neurons are particularly vulnerable to hypoglycaemic stress leading to memory impairment. In the present article, we have investigated the dopamine (DA) content, homovanillic acid (HVA)/DA turnover ratio, DA D1 and DA D2 receptors in the hippocampus of insulin-induced hypoglycaemic (IIH) and streptozotocin induced diabetic rats where brain functions are impaired. The DA content decreased significantly in hippocampus of diabetic, diabetic +IIH and control +IIH rats compared to control. The HVA/DA turnover ratio also increased significantly in diabetic, diabetic +IIH and control +IIH rats compared to control. Scatchard analysis using [3H] DA in the hippocampus showed a significant increase in DA receptors of diabetic, diabetic +IIH and control +IIH rats with decreased affinity. Gene expression studies using Real-time PCR showed an increased expression of DA D1 and DA D2 receptors in the hippocampus of hypoglycaemic and diabetic rats. Our results indicate that the dopaminergic system is impaired in the hippocampus of hypoglycaemic and hyperglycaemic rats impairing DA related functions of hippocampus. We observed a prominent dopaminergic functional disturbance in the hypoglycaemic condition than in hyperglycaemia compared to control. This dopaminergic dysfunction in hippocampus during hypoglycaemia and hyperglycaemia is suggested to contribute to cognitive and memory deficits. This will have clinical significance in the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelmalik PA, Shannon P, Yiu A, Liang P, Adamchik Y, Weisspapir M, Samoilova M, McIntyre Burnham W, Carlen PL (2007) Hypoglycemic seizures during transient hypoglycemia exacerbate hippocampal dysfunction. Neurobiol Dis 26:646–660. doi:10.1016/j.nbd.2007.03.002

    Article  PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Moore H (2003) Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 9:404–416. doi:10.1177/1073858403252674

    Article  PubMed  CAS  Google Scholar 

  • Akyol A, Kiylioglu N, Bolukbasi O, Guney E, Yurekli Y (2003) Repeated hypoglycemia and cognitive decline: a case report. Neuroendocrinol Lett 24:54–56

    PubMed  CAS  Google Scholar 

  • Arison RN, Ciaccio EI, Glitzer MS, Cassaro JA, Pruss MP (1967) Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes 16:51–56

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–368. doi:10.1001/archpsyc.55.4.362

    Article  PubMed  CAS  Google Scholar 

  • Auer RN (2004) Hypoglycemic brain damage. Forensic Sci Int 146:105–110. doi:10.1016/j.forsciint.2004.08.001

    Article  PubMed  CAS  Google Scholar 

  • Auer RN, Siesjö BK (1988) Biological differences between ischemia, hypoglycemia and epilepsy. Ann Neurol 24:699–707. doi:10.1002/ana.410240602

    Article  PubMed  CAS  Google Scholar 

  • Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984) The distribution of hypoglycemic brain damage. Acta Neuropathol 64:177–191. doi:10.1007/BF00688108

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ami H, Nagachandran P, Mendelson A, Edoute Y (1999) Drug-induced hypoglycemic coma in 102 diabetic patients. Arch Intern Med 159:281–284. doi:10.1001/archinte.159.3.281

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj SK, Sandhu SK, Sharma P, Kaur G (1999) Impact of diabetes on CNS: role of signal transduction cascade. Brain Res Bull 49:155–162. doi:10.1016/S0361-9230(99)00047-7

    Article  PubMed  CAS  Google Scholar 

  • Boyle NR, O’ Connor A, Kempers S, Yeo R, Qualis C (1994) Adaption in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci USA 91:9352–9356. doi:10.1073/pnas.91.20.9352

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (1999) Metabolic encephalopathies. Basic neurochemistry, vol 5. Lippincott Williams Wilkins, New York, p 38

  • Callahan B, Yuan J, Stover G, Hatzidimitriou G, Ricaurte G (1998) Effects of 2-deoxy-D-glucose on methamphetamine-induced dopamine and serotonin neurotoxicity. J Neurochem 70:190–197

    Article  PubMed  CAS  Google Scholar 

  • Chalmers JC, Risk MTA, Kean DM, Grant R, Ashworth B, Campbell IW (1991) Severe amnesia after severe hypoglycemia: clinical, psychometric and magnetic resonance imaging correlations. Diabetes Care 14:922–925. doi:10.2337/diacare.14.10.922

    Article  PubMed  CAS  Google Scholar 

  • Denise T, Tom OV, Philip EC, William JP (2004) Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA. 101:6217–6221. doi:10.1073/pnas0307048101

    Article  CAS  Google Scholar 

  • Dey J, Misra A, Desai NG, Mahapatra AK, Padma MV (1997) Cognitive function in younger type II diabetes. Diabetes Care 20:32–35. doi:10.2337/diacare.20.1.32

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, Smolich JJ, Esler MD (1992) Disposition of endogeneous adrenaline compared to noreadrenaline released by cardiac sympathetic nerves in the anaesthetized dogs. Naunyn Schmiedebergs Arch Pharmacol 345:160–171. doi:10.1007/BF00165731

    Article  PubMed  CAS  Google Scholar 

  • Ellis KA, Mehta MA, Wesnes KA, Armstrong S, Nathan PJ (2005) Combined D1/D2 receptor stimulation under conditions of dopamine depletion impairs spatial working memory performance in humans. Psychopharmacol 1:771–780

    Google Scholar 

  • Engelsen B, Westerberg E, Fonnum F, Wieloch T (1986) Effect of insulin-induced hypoglycemia on the concentrations of glutamate and related amino acids and energy metabolites in the intact and decorticated rat neostriatum. J Neurochem 47:1634–1941. doi:10.1111/j.1471-4159.1986.tb00806.x

    Article  PubMed  CAS  Google Scholar 

  • Ewing FME, Deary IJ, McCrimmon RJ, Strachan MW, Frier BM (1998) Effect of acute hypoglycemia on visual information processing in adults with type 1 diabetes mellitus. Physiol Behav 64:653–660. doi:10.1016/S0031-9384(98)00120-6

    Article  PubMed  CAS  Google Scholar 

  • Flanagan DE, Evans ML, Monsod TP, Rife F, Heptulla RA, Tamborlane WV, Sherwin RS (2003) The influence of insulin on circulating ghrelin. Am J Physiol Endocrinol Metab 284:E313–E316

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, Caron MG (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci USA 88:3772–3776. doi:10.1073/pnas.88.9.3772

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M, Okuchi K, Hiramatsu KI, Sakaki T, Sagakuchi S, Ishii Y (1997) Specific changes in human brain after hypoglycemic injury. Stroke 28:584–587

    PubMed  CAS  Google Scholar 

  • Grace AA (1993) Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm Gen Sect 91:111–134. doi:10.1007/BF01245228

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24. doi:10.1016/0306-4522(91)90196-U

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MW, Creese I (1982) 3H-dopamine binding to rat striatal D2 and D3 sites: enhancement by magnesium and inhibition by guanine nucleotides and sodium. Life Sci 30:1587–1595

    Google Scholar 

  • Hannonen R, Tupola S, Ahonen T, Riikonen R (2003) Neurocognitive functioning in children with type-1 diabetes with and without episodes of severe hypoglycaemia. Dev Med Child Neurol 45:262–268. doi:10.1017/S0012162203000501

    Article  PubMed  Google Scholar 

  • Hawdon JM (1999) Hypoglycaemia and the neonatal brain. Eur J Pediatr 158:9–12. doi:10.1007/PL00014319

    Article  Google Scholar 

  • Heffner TG, Hartman JA, Seiden LS (1980) A rapid method for the regional dissection of the rat brain. Pharmacol Biochem Behav 13:453–456. doi:10.1016/0091-3057(80)90254-3

    Article  PubMed  CAS  Google Scholar 

  • Hershey T, Bhargava N, Sadler M, White NH, Craft S (1999) Conventional versus intensive diabetes therapy in children with type 1 diabetes: effects on memory and motor speed. Diabetes Care 22:1318–1324. doi:10.2337/diacare.22.8.1318

    Article  PubMed  CAS  Google Scholar 

  • Hershey T, Lillie R, Sadler M, White NH (2003) Severe hypoglycemia and long-term spatial memory in children with type 1 diabetes mellitus: a retrospective study. J Int Neuropsychol Soc 9:740–750

    Google Scholar 

  • Hiroshige F, Hiroyuki U, Yusuke S, Shinobu Oohara-K, Yoko Y, Akihisa I (2005) Dopamine D2 receptor plays a role in memory function: implications of dopamine–acetylcholine interaction in the ventral hippocampus. Psychopharmacol 182:253–261. doi:10.1007/s00213-005-0072-x

    Article  CAS  Google Scholar 

  • Hohenegger M, Rudas B (1971) Kidney function in experimental diabetic ketosis. Diabetol 7:334–338. doi:10.1007/BF01219467

    Article  CAS  Google Scholar 

  • Holemans X, Dupuis M, Misson N, Vanderijst JF (2001) Reversible amnesia in type 1 diabetic patient and bilateral hippocampal lesions on magnetic resonance imaging (MRI). Diabet Med 18:761–764. doi:10.1046/j.1464-5491.2001.00481.x

    Article  PubMed  CAS  Google Scholar 

  • Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A (2003) Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J Neurosci 23:5079–5087

    PubMed  CAS  Google Scholar 

  • Hortnagl H, Berger ML, Sperk G, Pifl C (1991) Regional heterogeneity in the distribution of neurotransmitter markers in the rat hippocampus. Neuroscience 45:261–272. doi:10.1016/0306-4522(91)90224-C

    Article  PubMed  CAS  Google Scholar 

  • Jacob RJ, Weber AB, Dziura J, Morgen J, Sherwin RS (1995) Brainstem dysfunction is provoked by a less pronounced hypoglycemic stimulus in diabetic BB rats. Diabetes 44:900–905. doi:10.2337/diabetes.44.8.900

    Article  PubMed  CAS  Google Scholar 

  • Joseph A, Robinson R, Paulose CS (2007) Enhanced [3H] glutamate binding in the cerebellum of insulin induced hypoglycaemic and streptozotocin induced diabetic rats. Cell Mol Neurobiol 156:298–304. doi:10.1007/s10571-007-9198-1

    Google Scholar 

  • Karp MM (1989) Hypoglycemia in diabetes among children and adolescents. Indian J Pediatr 56:93–98. doi:10.1007/BF02776472

    Article  Google Scholar 

  • Kaufman FR (1998) Diabetes in children and adolescents. Areas of controversy. Med Clin North Am 82:721–738. doi:10.1016/S0025-7125(05)70021-3

    Article  PubMed  CAS  Google Scholar 

  • Kino M, Yamato T, Aomine M (2004) Simultaneous measurement of nitric oxide, blood glucose, and monoamines in the hippocampus of diabetic rat: an in vivo microdialysis study. Neurochem Int 44:65–73. doi:10.1016/S0197-0186(03)00125-6

    Article  PubMed  CAS  Google Scholar 

  • Lincoln NB, Faleiro RM, Kelly C, Kirk BA, Jeffcoate WJ (1996) Effect of long-term glycemic control on cognitive function. Diabetes Care 19:656–658. doi:10.2337/diacare.19.6.656

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NH, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lozovsky D, Saller CF, Kopin IJ (1981) Dopamine receptor binding is increased in diabetic rats. Science 214:1031–1033. doi:10.1126/science.6458088

    Article  PubMed  CAS  Google Scholar 

  • Madras BK, Fahey MA, Canfield DR, Spealman RD (1988) D1 and D2 dopamine receptors in caudate-putamen of nonhuman primates (Macaca fascicularis). J Neurochem 51:934–943. doi:10.1111/j.1471-4159.1988.tb01830.x

    Article  PubMed  CAS  Google Scholar 

  • McCrimmon RJ, Deary IJ, Frier BM (1997) Auditory information processing during acute insulin-induced hypoglycaemia in nondiabetic human subjects. Neuropsychologia 35:1547–1553. doi:10.1016/S0028-3932(97)00080-8

    Article  PubMed  CAS  Google Scholar 

  • McNay EC, Williamson A, McCrimmon RJ, Sherwin RS (2006) Cognitive and neural hippocampal effects of long-term moderate recurrent hypoglycemia. Diabetes 55:1088–1095. doi:10.2337/diabetes.55.04.06.db05-1314

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber MC (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574

    PubMed  CAS  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212. doi:10.1016/0006-8993(88)90765-2

    Article  PubMed  CAS  Google Scholar 

  • Paulose CS, Dakshinamurti K, Packer S, Stephens NL (1988) Sympathetic stimulation and hypertension in pyridoxine deficient adult rats. Hypertension 11:387–391

    PubMed  CAS  Google Scholar 

  • Pollack A (2004) Coactivation of D1 and D2 dopamine receptors: in marriage, a case of his, hers, and theirs. Sci STKE 255:50

    Google Scholar 

  • Pramming S, Thorsteinsson B, Bendtson I, Binder C (1991) Symptomatic hypoglycaemia in 411 type 1 diabetic patients. Diabet Med 8:217–222

    Article  PubMed  CAS  Google Scholar 

  • Rovet JF, Ehrlich RM (1999) The effect of hypoglycemic seizures on cognitive function in children with diabetes: a 7-year prospective study. J Pediatr 134:503–506. doi:10.1016/S0022-3476(99)70211-8

    Article  PubMed  CAS  Google Scholar 

  • Sandberg M, Butcher PS, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    PubMed  CAS  Google Scholar 

  • Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672. doi:10.1111/j.1749-6632.1949.tb27297.x

    Article  CAS  Google Scholar 

  • Shankar PN, Joseph A, Paulose CS (2007) Decreased [3H] YM–09151–2 binding to dopamine D2 receptors in the hypothalamus, brainstem and pancreatic islets of streptozotocin-induced diabetic rats. Eur J Pharmacol 557:99–105. doi:10.1016/j.ejphar.2006.11.018

    Article  PubMed  CAS  Google Scholar 

  • Shimomura YSH, Takahashi M, Uehara Y, Kobayashi I, Kobayashi S (1990) Ambulatory activity and dopamine turnover in streptozotocin-induced diabetic rats. Exp Clin Endocrinol 95:385–388

    PubMed  CAS  Google Scholar 

  • Sternberg DE, Heninger GR, Roth RH (1983) Plasma homovanillic acid as an index of brain dopamine metabolism: enhancement with debrisoquin. Life Sci 32:2447–2452. doi:10.1016/0024-3205(83)90370-3

    Article  PubMed  CAS  Google Scholar 

  • Strachan MWJ, Ewing FME, Frier BM, McCrimmon RJ, Deary IJ (2004) Effects of acute hypoglycaemia on auditory information processing in adults with type 1 diabetes mellitus. Diabetol 46:95–105

    Google Scholar 

  • Suh SW, Aoyama K, Chen Y, Garnier P, Matsumori Y, Gum E, Liu J, Swanson RA (2003) Hypoglycemic neuronal death and cognitive impairment are prevented by poly (ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 23:10681–10690

    PubMed  CAS  Google Scholar 

  • Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54:1452–1458. doi:10.2337/diabetes.54.5.1452

    Article  PubMed  CAS  Google Scholar 

  • Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA (2004) Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 16:538–545. doi:10.1016/j.nbd.2004.04.017

    Article  PubMed  CAS  Google Scholar 

  • Tasker RC, Coyle JT, Vornov JJ (1992) The regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801. J Neurosci 12:4298–4308

    PubMed  CAS  Google Scholar 

  • Trulson ME, Himmel CD (1983) Decreased brain dopamine synthesis rate and increased [3H] spiroperidol binding in streptozotocin-diabetic rats. J Neurochem 40:1456–1459

    PubMed  CAS  Google Scholar 

  • Vannucci RC, Vannucci SJ (2001) Hypoglycemic brain injury. Semin Neonatol 6:147–155. doi:10.1053/siny.2001.0044

    Article  PubMed  CAS  Google Scholar 

  • Wegener G, Volke V, Rosenberg R (2000) Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 130:575–580. doi:10.1038/sj.bjp.0703349

    Article  PubMed  CAS  Google Scholar 

  • Wieloch T, Engelsen B, Westerberg E, Auer R (1985) Lesions of the glutamatergic cortico-striatal projections in the rat ameliorate hypoglycemic brain damage in the striatum. Neurosci Lett 58:25–30. doi:10.1016/0304-3940(85)90323-4

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson A, Levin ED (1999) Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neurosci 89:743–749. doi:10.1016/S0306-4522(98)00346-7

    Article  CAS  Google Scholar 

  • Wredling R, Levander S, Adamson U, Lins PE (1990) Permanent neuropsychological impairment after recurrent episodes of severe hypoglycaemia in man. Diabetol 33:152–157. doi:10.1007/BF00404042

    Article  CAS  Google Scholar 

  • Yamato T, Misumi Y, Yamasaki S, Kino M, Aomine M (2004) Diabetes mellitus decreases hippocampal release of neurotransmitters: an in vivo microdialysis study of awake, freely moving rats. Diabetes Nutr Metab 17:128–136

    PubMed  CAS  Google Scholar 

  • Yokoyama C, Okamura H, Ibata Y (1995) Dopamine D2-like receptors labeled by [3H]YM-09151–2 in the rat hippocampus: characterization and autoradiographic distribution. Brain Res 681:153–159. doi:10.1016/0006-8993(95)00308-D

    Article  PubMed  CAS  Google Scholar 

  • Zangen A, Overstreet DH, Yadid G (1999) Increased catecholamine levels in specific brain regions of a rat model of depression: normalization by chronic antidepressant treatment. Brain Res 824:243–250. doi:10.1016/S0006-8993(99)01214-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. C. S. Paulose thanks DBT, DST, ICMR. Government of India and KSCSTE, Government of Kerala, for the financial assistance. Remya Robinson thanks Cochin University for Junior Research Fellowship. Amee Krishnakumar thanks ICMR for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Paulose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, R., Krishnakumar, A. & Paulose, C.S. Enhanced Dopamine D1 and D2 Receptor Gene Expression in the Hippocampus of Hypoglycaemic and Diabetic Rats. Cell Mol Neurobiol 29, 365–372 (2009). https://doi.org/10.1007/s10571-008-9328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9328-4

Keywords

Navigation