Skip to main content

Advertisement

Log in

Regulation of S100B Expression in Long-Term Potentiation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The role of intracellular regulatory cascades in inducing the expression of S100B during the formation of long-term post-tetanic potentiation (LTP) in field CA1 was studied in hippocampal slices from rats. Activation of transcription factor p53 (a positive regulator of S100B transcription) using nutlin-3 increased the basal level of S100B mRNA to 151% of control, which was significantly lower than its content in tetanized slices (280%). Thus, p53 cannot be the only transcription factor regulating S100B expression in LTP. KN-93, an inhibitor of Ca2+/calmodulin-dependent kinases (CaMK), completely blocked the increase in the S100B mRNA level after tetanization, while its inactive analog KN-92 had no effect on S100B expression. K-252a, an inhibitor of CaMKII and receptor tyrosine kinases, significantly suppressed S100B expression in LTP, while inhibition of MAPK p38 or RSK2 produced moderate decreases and inhibition of MEK1 had no effect on the quantity of S100B mRNA. Thus, calmodulin kinases play a key role in inducing S100B expression in LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Lisachev, V. O. Pustyl’nyak, M. B. Shtark, and O. I. Epshtein, “Induction of expression of the S100B gene on long-term potentiation in hippocampal field CA1 depends on the activity of NMDA-type receptors,” Byull. Eksperim. Biol. Med., 154, No. 10, 481–484 (2012).

    Google Scholar 

  2. D. R. Alessi, A. Cuenda, P. Cohn, et al., “PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase in vitro and in vivo,” J. Biol. Chem., 270, No. 46, 27489–27494 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. T. Arnauld, S. Vankoningsloo, P. Renard, et al., “CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation,” EMBO J., 21, No. 1–2, 53–63 (2002).

    Article  Google Scholar 

  4. J. Bain, L. Plater, M. Elliott, et al., “The selectivity of protein kinase inhibitors: a further update,” Biochem. J., 408, No. 3, 297–315 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. M. M. Berg, D. W. Sternberg, L. F. Parada, and M. V. Chao, “K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity,” J. Biol. Chem., 267, No. 1, 13–16 (1992).

    CAS  PubMed  Google Scholar 

  6. S. Chawla, P. Vanhoutte, F. J. Arnold, et al., “Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5,” J. Neurochem., 85, 151–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Y. Cho, Z. He, Y. Zhang, et al., “The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction,” Cancer Res., 65, 3596–3603 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. J. C. Condon, V. Pezzi, B. M. Drummond, et al., “Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase,” Endocrinology, 143, No. 9, 3651–3657 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. A. L. Craig, J. A. Chrystal, J. A. Fraser, et al., “The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members,” Mol. Cell. Biol., 27, 3542–3555 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. R. Donato, B. R. Cannon, G. Sorci, et al., “Functions of S100 Proteins,” Curr. Mol. Med., 13, No. 1, 24–57 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. R. Donato, G. Sorci, F. Riuzzi, et al., “S100B’s double life: intracellular regulator and extracellular signal,” Biochim. Biophys. Acta, 1793, No. 6, 1008–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. D. Fomina-Yadlin, S. Kubicek, D. Walpita, et al., “Small-molecule inducers of insulin expression in pancreatic alpha-cells,” Proc. Natl. Acad. Sci. USA, 107, No. 34, 15099–15104 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. L. Gao, L. A. Blair, and J. Marshall, “CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels,” Biochem. Biophys. Res. Commun., 345, No. 4, 1606–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. V. M. Golubovskaya, “Targeting FAK in human cancer: from finding to first clinical trials,” Front. Biosci., 19, 687–706 (2014).

    Article  CAS  Google Scholar 

  15. A. M. Gonzalez-Guerrico, J. Meshki, L. Xiao, et al., “Molecular mechanisms of protein kinase C-induced apoptosis in prostate cancer cells,” J. Biochem. Mol. Biol., 38, No. 6, 639–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Hashimoto, T. Nakayama, T. Teramoto, et al., “Potent and preferential inhibition of Ca2+/calmodulin-dependent protein kinase II by K252a and its derivative, KT5926,” Biochem. Biophys. Res. Commun., 181, No. 1, 423–429 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. C. Huang, W. Y. Ma, A. Maxiner, et al., “p38 kinase mediates UVinduced phosphorylation of p53 protein at serine 389,” J. Biol. Chem., 274, 12229–12235 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. H. Kase, K. Iwahashi, S. Nakanishi, et al., “K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases,” Biochem. Biophys. Res. Commun., 142, No. 2, 436–440 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. J. Lin, Q. Yang, Z. Yan, et al., “Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells,” J. Biol. Chem., 279, No. 32, 34072–34077 (2004).

    Article  Google Scholar 

  20. P. D. Lisachev, M. B. Shtark, O. O. Sokolova, et al., “A Comparison of the dynamics of S100B, S100A1, and S100A6 mRNA expression in hippocampal CA1 area of rats during long-term potentiation and after low-frequency stimulation,” Cardiovasc. Psychiatry Neurol., publ. online, doi: 10.1155/2010/720958 (2010).

  21. J. C. Madera and E. S. Levine, “Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission,” J. Neurophysiol., 100, 3175–3184 (2008).

    Article  Google Scholar 

  22. G. Martiny-Baron, M. G. Kazanietz, H. Mischak, et al., “Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976,” J. Biol. Chem., 268, No. 13, 9194–9197 (1993).

    CAS  PubMed  Google Scholar 

  23. A. C. Maroney, L. Lipfert, M. E. Forbes, et al., “K-252a induces tyrosine phosphorylation of the focal adhesion kinase and neurite outgrowth in human neuroblastoma SH-SY5Y cells,” J. Neurochem., 64, No. 2, 540–549 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. B. Mellström, M. Savignac, R. Gomez-Villafuertes, and J. R. Naranjo, “Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models,” Physiol. Rev., 88, No. 2, 421–449 (2008).

    Article  PubMed  Google Scholar 

  25. E. Miyamoto, “Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus,” J. Pharmacol. Sci., 100, 433–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. S. Nakanishi, K. Yamada, H. Kase, et al., “K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase,” J. Biol. Chem., 263, No. 13, 6215–6219 (1988).

    CAS  PubMed  Google Scholar 

  27. G. Nayak and G. M. Cooper, “p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase-Akt-GSK3 signaling,” Cell Death Dis., e400 (2012).

  28. H. Nishiyama, T. Knopfel, S. Endo, and S. Itohara, “Glial protein S100B modulates long-term neuronal synaptic plasticity,” Proc. Natl. Acad. Sci. USA, 99, 4037–4042 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. V. Parpura, V. Grubišić, and A. Verkhratsky, “Ca2+ sources for the exocytotic release of glutamate from astrocytes,” Biochim. Biophys. Acta, 1813, 984–991 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. G. Perea and A. Araque, “GLIA modulates synaptic transmission,” Brain Res. Rev., 63, 93–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. V. O. Pustylnyak, P. D. Lisachev, M. B. Shtark, and O. I. Epstein, “Regulation of S100B gene in rat hippocampal CA1 area during long term potentiation,” Brain Res., 1394, 33–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. M. Rothermundt, J. N. Ahn, and S. Jorgens, “S100B in schizophrenia: an update,” Gen. Physiol. Biophys., F76–F81 (2009).

  33. C. Qin, T. Nguyen, J. Stewart, et al., “Estrogen up-regulation of p53 gene expression in MCF-7 breast cancer cells is mediated by calmodulin kinase IV-dependent activation of a nuclear factor KB/CCAATbinding transcription factor-1 complex,” Mol. Endocrinol., 16, No. 8, 1793–1809 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. S. Sakatani, A. Seto-Ohshima, Y. Shinohara, et al., “Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo,” J. Neurosci., 28, No. 43, 10928–10936 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. J. M. Schmitt, E. S. Guire, T. Saneyoshi, and T. R. Soderling, “Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation,” J. Neurosci., 25, No. 5, 1281–1290 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. M. L. Schroeter, H. Abdul-Khaliq, J. Sache, et al., “Mood disorders are glial disorders: evidence from in vivo studies,” Cardiovasc. Psych. Neurol., doi.org/10.1155/2010/780645 (2010).

  37. G. Sorci, R. Bianchi, F. Riuzzi, et al., “S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond,” Cardiovasc. Psych. Neurol., doi.org/10.1155/2010/656481 (2010).

  38. M. Sumi, K. Kiuchi, T. Ishikawa, et al., “The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells,” Biochem. Biophys. Res. Commun., 181, No. 3, 968–975 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. K. Takeda and H. Ichijo, “Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system,” Genes Cells, 7, 1099–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. L. T. Vassilev, B. T. Vu, B. Graves, et al., “In vivo activation of the p53 pathway by small-molecule antagonists of MDM2,” Science, 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. G. A. Wayman, H. Tokumitsu, M. A. Davare, and T. R. Soderling, “Analysis of CaM-kinase signaling in cells,” Cell Calcium, 50, No. 1, 1–8 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. S. Yano, H. Tokumitsu, and T. R. Soderling, “Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway,” Nature, 396, 584–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. T. Zarubin and J. Han, “Activation and signaling of the p38 MAP kinase pathway,” Cell Res., 15, No. 1, 11–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. F. Zheng, Y. Luo, and H. Wang, “Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin,” J. Neurosci. Res., 878, No. 2, 380–392 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Lisachev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 8, pp. 953–963, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisachev, P.D., Pustyl’nyak, V.O. & Shtark, M.B. Regulation of S100B Expression in Long-Term Potentiation. Neurosci Behav Physi 46, 312–318 (2016). https://doi.org/10.1007/s11055-016-0235-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0235-8

Keywords

Navigation