Skip to main content
Log in

Electrophysiological Analysis of the Functional State of Spinal Cord Motoneurons in Rats with Parathyroprivous Tetany

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A comparative analysis of baseline activity, tetanic and post-tetanic increases and decreases in the frequencies of spinal cord motoneuron responses to high-frequency (50 and 100 Hz) stimulation (HFrS) of the flexor (G) and extensor (P) nerves of the hindlimb was performed in normal rats and rats with parathyroprivous (hypocalcemic) tetany. Experiments were run using on-line selection and programmed analysis of spike activity. Significant shifts in tetanic and post-tetanic motoneuron activity were recorded on days 3–7 and 21–22 of the development of acute and chronic tetanization respectively, without any significant change in baseline activity. Along with sharp increases in post-stimulus excitatory changes in activity in response to HFrS during the development of acute tetany, there was relative weakening in animals with chronic tetany. At the same time, there was weakening or complete disappearance of depressor reactions during the period of development of acute tetany with some degree of stabilization in animals with latent tetany. A cause-effect relationship was identified between motor disorders in parathyroid insufficiency on the one hand and impairments to the ratio of inhibitory/excitatory processes in spinal cord motoneurons on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kostyuk, Calcium and Cellular Excitability, Nauka, Moscow (1986).

    Google Scholar 

  2. P. G. Kostyuk, E. A. Luk’yanets, A. S. Ter-Markosyan, and D. N. Khudaverdyan, “Parathyroid hormone stimulation of the calcium conductivity of nerve cells,” Neirofiziologiya, 22, No. 3, 373–380 (1990).

    CAS  Google Scholar 

  3. A. S. Ter-Markosyan, V. K. Lutsenko, D. N. Khudaverdyan, and N. N. Khlebnikova, “Transport of 45Ca2+ and 3H-GABA in nerve endings isolated from the cerebral cortex of rats with hyperparathyroidism,” Byull. Eksperim. Biol. Med., III, No. 10, 402–404 (1987).

    Google Scholar 

  4. D. N. Khudaverdyan, “Characteristics of spinal cord reflex reactions in experimental hypoparathyroidism,” Byull. Eksperim. Biol. Med., 86, No. 12, 659–662 (1978).

    Google Scholar 

  5. D. N. Khudaverdyan and V. Z. Grigoryan, “Inhibitory processes in the spinal cord in cats with parathyroprivous tetany,” Dokl. Akad. Nauk SSSR, 246, 753–755 (1979).

    Google Scholar 

  6. D. N. Khudaverdyan, G. G. Artsruni, A. S. Ter-Markosyan, and A. S. Ovsepyan, “Ca2+ contents in liver and brain mitochondria in rats with hypoparathyroidism,” Byull. Eksperim. Biol. Med., XCVII, No. 3, 301–303 (1984).

    Google Scholar 

  7. D. N. Khudaverdyan and A. G. Tatevosyan, “Contents of some neuroactive amino acids in different parts of the brain in experimental hypoparathyroidism,” Zh. Eksperim. Klin. Med. Akad. Nauk. Arm. SSR, 18, No. 2, 19–23 (1987).

    Google Scholar 

  8. D. N. Khudaverdyan and A. S. Ter-Markosyan, “Nervous tissue as a target for the actions of parathyroid hormone,” Usp. Fiziol. Nauk., 23, No. 1, 90–102 (1992).

    Google Scholar 

  9. G. Birke and A. Draguhn, “No simple brake – the complex functions of inhibitory,” Pharmacopsychiatry, 43, No. 1, 21–31 (2010).

    Article  Google Scholar 

  10. N. Burnashev and A. Rozov, “Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy,” Cell Calcium, 37, No. 5, 489–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. T. Bouschet and J. M. Henley, “Calcium as an extracellular signaling molecule: perspectives on the Calcium Sensing Receptor in the brain,” C. R. Biol., 328, 691–700 (2005).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. R. Cuppini, P. Ambrogini, S. Sartini, et al., “The role of sensory input in motor neuron sprouting control,” Somatosens. Mot. Res., 19, No. 4, 279–285 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. F. A. Davis and C. L. Schauf, “Neural blocking activity of multiple sclerosis and EAE sera,” Neurology, 26, No. 6, part 2, 43–44 (1976).

  14. Z. Fengt and D. M. Durand, “Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity,” Epilepsia, 47, No. 4, 727–736 (2006).

    Article  Google Scholar 

  15. S. Fujii, M. Matsumoto, K. Igarishi, et al., “Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors,” Learn. Mem., 7, 312–320 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. A. A. Galoyan, J. S. Sarkissian, V. A. Chavushyan, et al., “Neuroprotection by hypothalamic peptide proline-rich peptide-1 in Abeta 25-35 model of Alzheimer’s disease,” Alzheim. Dement., 4, No. 5, 332–344 (2008).

    Article  CAS  Google Scholar 

  17. A. A. Galoyan, N. Khalaj, L. E. Hambardzumyan, et al., “Protective effects of hypothalamic proline-rich peptide and cobra venom Naja Naja Oxiana on dynamics of vestibular compensation following unilateral labyrinthectomy,” Neurochem. Res., 35, 1747–1760 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. L. Giardino, M. Zanni, M. Fernandez, et al., “Plasticity of GABA(a) system during ageing: focus on vestibular compensation and possible pharmacological intervention,” Brain Res., 929, No. 1, 76–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. K. Jensen, M. S. Jensen, and J. D. Lambert, “Role of presynaptic L-type Ca2+ channels in gabaergic synaptic transmission in cultured hippocampal neurons,” J. Neurophysiol., 81, No. 3, 1225–1230 (1999).

    CAS  PubMed  Google Scholar 

  20. A. R. Johnston, A. Him, and M. B. Dutia, “Differential regulation of GABA(A) and GABA(B) receptors during vestibular compensation,” Neuroreport, 12, 597–600 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. D. N. Khudaverdyan and A. S. Ter-Markosyan, “Parathyroid hormone as a modulator of the functional activity of neuron,” Biochemistry (Moscow), 65, No. 2, 171–175 (2000).

    CAS  Google Scholar 

  22. M. P. Mattson, “Calcium and neurodegeneration,” Aging Cell., 6, No. 3, 337–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. H. Matsui, S. Aou, J. Ma, and T. Hori, “Central actions of parathyroid hormone on blood calcium and hypothalamic neuronal activity in the rat,” Am. J. Physiol., 268, No. 1, part 2, R21–R27 (1995).

  24. R. J. Miller, “Presynaptic receptors,” Annu. Rev. Pharmacol. Toxicol., 38, 201–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. D. F. Owens and A. R. Kriegstein, “Is there more to GABA than synaptic inhibition?” Nat. Rev. Neuroscience, 3, No. 9, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Elsevier Academic Press (2005).

  27. J. S. Sarkissian, V. A. Chavushyan, I. Meliksetyan, et al., “Protective effect of Naja naja oxiana cobra venom in rotenone-induced model of Parkinson’s disease: electrophysiological and histochemical analysis,” New Armen. Med. J., 1, 43–56 (2007).

    Google Scholar 

  28. G. E. Stutzmann, A. Caccamo, F. M. LaFerla, and I. Parker, “Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin 1 results in exaggerated Ca2+ signals and altered membrane excitability,” J. Neurosci., 24, 508–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. A. S. Ter-Markosyan and D. N. Khudaverdyan, “Cellular mechanism of parathyroid hormone action on the Nerve Tissue,” New Armen. Med. J., 3, No. 2, 6–13 (2009).

    Google Scholar 

  30. B. Tighilet and M. Lacour, “Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats,” Eur. J. Neurosci., 13, 2255–2267 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. T. Wang, J. Wang, J. E. Cottrell, and I. S. Kass, “Small physiologic changes in calcium and magnesium alter excitability and burst firing of CA1 pyramidal cells in rat hippocampal slices,” J. Neurosurg. Anesthesiol., 16, No. 3, 201–209 (2004).

    Article  PubMed  Google Scholar 

  32. R. Yuste, A. Majewska, and K. Holthoff, “From form to function: calcium compartmentalization in dendritic spines,” Nat. Neurosci., 3, 653–659 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Khudaverdyan.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 5, pp. 555–580, May, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudaverdyan, D.N., Avetisyan, K.A., Chavushyan, V.A. et al. Electrophysiological Analysis of the Functional State of Spinal Cord Motoneurons in Rats with Parathyroprivous Tetany. Neurosci Behav Physi 46, 9–27 (2016). https://doi.org/10.1007/s11055-015-0193-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0193-6

Keywords

Navigation