Skip to main content
Log in

Linkage of Brain Oscillatory Systems with the Cognitive (experience and valence) and Physiological (cardiovascular reactivity) Components of the Emotions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The linkage between brain oscillatory systems with the cognitive (experience and valence) and physiological (cardiovascular reactivity) components of the emotions was studied. Experiments were performed on healthy subjects (n = 49, all male) with evocation of the emotions of joy and anger (guided imagination method) combined with recording of multichannel EEG and cardiovascular reactivity (beat by beat, Finometer®). Correlation analysis results provided evidence supporting the relative specialization of spatially separated brain oscillator systems with different frequencies in the control of the cognitive (experience and valence) and physiological (cardiovascular reactivity) components of emotions. EEG θ (4–6 Hz) activity in the frontal areas (medial and lateral) of the cortex of the right hemisphere showed a predominant linkage with the intensity of the experience of anger; high-frequency α (10–12 and 12–14 Hz) and γ (30–45 Hz) activity in the central-parietal-occipital areas of the cortex of the left hemisphere was linked with cardiovascular reactivity for the emotions of joy and anger; γ activity in the parietal cortex of the left hemisphere was linked with cardiovascular reactivity for the emotion of joy. These data allow spatially separated brain oscillator systems with different frequencies to be regarded as a possible neurobiological mechanism coordinating the balance between the cognitive and physiological components of the emotions, as well as psychoneurosomatic interactions in the brain–body–consciousness system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Aftanas, The Emotional Space in Humans, SO RAMN, Novosibirsk (2000).

    Google Scholar 

  2. L. I. Aftanas, I. V. Brak, O. M. Giliniskaya, et al., “Individual variability in cardiovascular reactivity during execution of a defensive cardiac reflex in humans,” Ros. Fiziol. Zh., 94, No. 2, 163–173 (2008).

    CAS  Google Scholar 

  3. L. I. Aftanas, I. V. Brak, N. V. Reva, and S. V. Pavlov, “Brain oscillator systems and individual variability in the defensive cardiac reflex in humans,” Ros. Fiziol. Zh., 98, No. 11, (2013) (in press).

  4. L. I. Aftanas, S. V. Pavlov, I. V. Brak, and V. V. Korenek, “Individual predisposition to unconscious perception of threatening facial stimuli and positive reinforcement and cardiovascular stress reactivity,” Vestn. Ros. Akad. Med. Nauk., No. 11, 83–93 (2013).

  5. L. A. Aftanas, P. V. Sidorova, S. V. Pavlov, et al., “Activity of the motivational systems of positive and negative reinforcement and baseline measures of arterial pressure in humans,” Ros. Fiziol. Zh., 93, No. 12, 1362–1373 (2007).

    CAS  Google Scholar 

  6. M. A. Gilinskii, T. E. Latysheva, and L. P. Semenova, “Assay of catecholamines, serotonin, and 5-hydroxyindoleacetic acid in a single blood sample,” Klin. Lab. Diagn., No. 6, 25–28 (2007).

  7. S. G. Dan’ko, L. V. Gracheva, Yu. A. Boitsova, and M. L. Solov’eva, “Induction of emotional states by reading aloud texts with different emotional valencies and dynamics of EEG power in the β and γ frequency ranges,” Fiziol. Chelov., 37, No. 5, 46–50 (2011).

    Google Scholar 

  8. L. I. Aftanas and S. V. Pavlov, “Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation,” Int. J. Psychophysiol., 55, No. 3, 85–94 (2005).

    Article  PubMed  Google Scholar 

  9. I. Aftanas and A. Varlamov, “Associations of alexithymia with anterior and posterior activation asymmetries during evoked emotions: EEG evidence of right hemisphere ‘electrocortical effort,’” Int. J. Neurosci., 114, No. 11, 1443–1462 (2004).

    Article  PubMed  Google Scholar 

  10. L. I. Aftanas, N. V. Lotova, V. I. Koshkarov, et al., “Non-linear dynamic complexity of the human EEG during evoked emotions,” Int. J. Psychophysiol., 28, No. 1, 63–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. E. Başar, “Oscillations in ‘brain-body-mind’ – a holistic view including the autonomous system,” Brain Res., 1235, 2–11 (2008).

    Article  PubMed  Google Scholar 

  12. O. M. Bazanova and D. Vernon, “Interpreting EEG alpha activity,” Neurosci. Biobehav. Rev. (2013).

  13. J. T. Cacioppo, and W. L. Gardner, “Emotion,” Ann. Rev. Psychol., 50, 191–214 (1999).

    Article  CAS  Google Scholar 

  14. A. Charloux, F. Piquard, J. Ehrhart, et al., “Time-courses in renin and blood pressure during sleep in humans,” J. Sleep Res., 11, 73–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. S. Dockray and A. Steptoe, “Positive affect and psychobiological processes,” Neurosci. Biobehav. Rev., 35, No. 1, 69–75 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  16. J. Fell, N. Axmacher, and S. Haupt, “From alpha to gamma: electrophysiological correlates of meditation-related states of consciousness,” Med. Hypotheses, 75, No. 2, 218–224 (2010).

    Article  PubMed  Google Scholar 

  17. F. Ferrarelli, R. Smith, D. Dentico, et al., “Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep,” PLoS One, 8(8):e73417, doi: 10.1371/journal.pone.0073417 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. P. S. Foster, V. Drago, B. J. Ferguson, and D. W. Harrison, “Cerebral moderation of cardiovascular functioning: a functional cerebral systems perspective,” Clin. Neurophysiol., 119, No. 12, 2846–2854 (2008).

    Article  PubMed  Google Scholar 

  19. N. H. Frijda, “Impulsive action and motivation,” Biol. Psychol., 84, No. 3, 570–579 (2010).

    Article  PubMed  Google Scholar 

  20. A. Garcia, C. E. Uribe, M. C. Tavares, and C. Tomaz, “EEG and autonomic responses during performance of matching and non-matching to sample working memory tasks with emotional content,” Front. Behav. Neurosci., 5:82, doi: 10.3389/fnbeh.2011.00082.eCollection 2011 (2011).

  21. A. S. Garrett and R. J. Maddock, “Separating subjective emotion from the perception of emotion-inducing stimuli: an fMRI study,” Neuroimage, 33, No. 1, 263–274 (2006).

    Article  PubMed  Google Scholar 

  22. P. J. Gianaros and L. K. Sheu, “A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain-body pathway to coronary heart disease risk,” Neuroimage, 47, No. 3, 922–936 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  23. Guidelines Committee, “2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension,” J. Hypertension, 21, 1011–1053 (2003).

    Article  Google Scholar 

  24. H. Hopp, A. S. Troy, and I. B. Mauss, “The unconscious pursuit of emotion regulation: implications for psychological health,” Cogn. Emot., 25, No. 3, 532–545 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  25. N. Jatupaiboon, S. Pan-ngum, and P. Israsena, “Real-time EEGbased happiness detection system,” Sci. World J., 2013, Article ID 618649, doi: 10.1155/2013/618649.

  26. J. R. Jennings and A. F. Heim, “From brain to behavior: Hypertension’s modulation of cognition and affect,” Int. J. Hypertens., 2012, Article ID 701385, doi.org/10.1155/2012/701385 (2012).

  27. J. H. Kang, H. M. Ahn, J. W. Jeong, et al., “The modulation of parietal gamma oscillations in the human electroencephalogram with cognitive reappraisal,” Neuroreport, 23, No. 17, 995–999 (2012).

    Article  PubMed  Google Scholar 

  28. W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations: the inhibition-timing hypothesis,” Brain Res. Rev., 53, No. 1, 63–88 (2007).

    Article  PubMed  Google Scholar 

  29. G. G. Knyazev, “EEG delta oscillations as a correlate of basic homeostatic and motivational processes,” Neurosci. Biobehav. Rev., 36, No. 1, 677–695 (2012).

    Article  PubMed  Google Scholar 

  30. H. Laufs, “Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI,” Hum. Brain Mapp., 29, No. 7, 762–769 (2008).

    Article  PubMed  Google Scholar 

  31. W. R. Lovallo, “Do low levels of stress reactivity signal poor states of health?” Biol. Psychol., 86, No. 2, 121–128 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  32. A. Lutz, L. L. Greischar, N. B. Rawlings, et al., “ Long-term meditators self-induce high-amplitude gamma synchrony during mental practice,” Proc. Natl. Acad. Sci. USA, 101, No. 46, 16369–16373 (2004).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. I. Mauss and M. Robinson, “Measures of emotion: A review,” Cognition Emotion, 23, No. 2, 209–237 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  34. J. A. McCubbin, M. M. Merritt, J. J. Sollers, 3rd, et al., “Cardiovascular-emotional dampening: the relationship between blood pressure and recognition of emotion,” Psychosom. Med., 73, No. 9, 743–750 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  35. J. A. Maltzer, G. A. Fonzo, and R. T. Constable, “Transverse patterning dissociates human EEG theta power and hippocampal BOLD activation,” Psychophysiol., 46, No. 1, 153–162 (2009).

    Article  Google Scholar 

  36. B. Rubik, “Neurofeedback-enhanced gamma brainwaves from the prefrontal cortical region of meditators and non-meditators and associated subjective experiences,” J. Altern. Comp. Med., 17, No. 2, 109–115 (2011).

    Article  Google Scholar 

  37. D. Siever and K. Berg, “Helping the heart with audio-visual entrainment,” Appl. Psychophysiol. Biofeedback, 27, 313 (2002).

    Google Scholar 

  38. S. Suzuki, H. Kumano, and Y. Sakano, “Effects of effort and distress coping processes on psychophysiological and psychological stress responses,” Int. J. Psychophysiol., 47, No. 2, 117–128 (2003).

    Article  PubMed  Google Scholar 

  39. W. Wittling, A. Block, S. Genzel, and E. Schweiger, “Hemisphere asymmetry in parasympathetic control of the heart,” Neuropsychologia, 36, No. 5, 461–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. W. Wittling, A. Block, E. Schweiger, and S. Genzel, “Hemisphere asymmetry in sympathetic control of the human myocardium,” Brain Cogn., 38, 17–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. T. Womelsdorf, K. Johnston, M. Vinck, and S. Everling, “Thetaactivity in anterior cingulate cortex predicts task rules and their adjustments following errors,” Proc. Natl. Acad. Sci. USA, 107, No. 11, 5248–5253 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. M. Wyczesay, J. Kaisser, and A. M. Coenen, “Subjective mood estimation co-varies with spectral power EEG characteristics,” Acta Neurobiol. Exp. (Warsaw), 68, No. 2, 180–192 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Aftanas.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 100, No. 2, pp. 215–231, February, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftanas, L.I., Reva, N.V., Pavlov, S.V. et al. Linkage of Brain Oscillatory Systems with the Cognitive (experience and valence) and Physiological (cardiovascular reactivity) Components of the Emotions. Neurosci Behav Physi 45, 910–919 (2015). https://doi.org/10.1007/s11055-015-0165-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0165-x

Keywords

Navigation