Skip to main content
Log in

The Oscillatory Systems of the Brain and Individual Variability of the Defensive Cardiac Reflex in Humans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The defensive cardiac reflex (DCR) is a reaction of the cardiovascular system with a specific profile of short- and long-latency reactivities (mainly of arterial blood pressure (BP) and heart rate (HR)). The DCR reflects activation of the defensive motivational system and defensive coping programs in humans. The aim of the present work was to evaluate the contribution of the brain oscillatory systems to the mechanisms of individual variability of the DCR. The oscillatory dynamics of multichannel (64-channel) electroencephalogram (EEG) were assessed using evoked synchronization/desynchronization in different frequency ranges and hemodynamics were assessed using simultaneously recorded beat-by-beat measures of cardiovascular reactivity (Finapres® technology). This is the first report showing significant linkage between θ2 (6–8 Hz) EEG activity with short-latency DCR reactivity and between α2 (10–12 Hz) activity and long-latency reactivity. Hyperreactivity of the long-latency BP component was shown to be associated with the absence of a concomitant phase α2 synchronization evoked. It is suggested that high-frequency θ EEG oscillations are involved in the central magnitude scaling mechanisms and that α2 oscillations have a role in top-down inhibitory control of short- and long-latency stress reactivity of BP in the DCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Aftanas, I. V. Brak, O. M. Gilinskaya, et al., “Individual variability in cardiovascular reactivity in the realization of the defensive cardiac reflex in humans,” Ros. Fiziol. Zh., 94, No. 2, 163–173 (2008).

    CAS  Google Scholar 

  2. L. I. Aftanas, O. M. Gilinskaya, I. V. Brak, et al., “Dynamics of the reactivity of brain oscillators and arterial pressure in the defensive cardiac reflex in patients with hypertension,” Byull. Sib. Otdel. Rus. Akad. Med. Nauk., 31, No. 6, 108–121 (2011).

    Google Scholar 

  3. N. N. Danilova and S. V. Astaf’ev, “Attention in humans as a specific connection between EEG rhythms with wave modulators of the cardiac rhythm,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 791 (2000)

    CAS  Google Scholar 

  4. K. V. Sudakov, “Mechanisms of resistance to emotional stress: the advantages of the individual approach,” Vestn. Rus. Akad. Med. Nauk., 8, 8–12 (1998).

    Google Scholar 

  5. L. I. Aftanas, N. V. Lotova, V. I. Koshkarov, et al., “Non-linear dynamic complexity of the human EEG during evoked emotions,” Int. J. Psychophysiol., 28, No. 1, 63–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. E. Basar, “Is research on brain oscillations in a new ‘take-off state’ in integrative brain function?” Int. J. Psychophysiol., 85, 285–288 (2012).

    Article  Google Scholar 

  7. E. Başar, “Oscillations in ‘brain-body-mind’ – a holistic view including the autonomous system,” Brain Res., 1235, 2–11 (2008).

    Article  PubMed  Google Scholar 

  8. O. M. Bazanova and D. Vernon, “Interpreting EEG alpha activity,” Neurosci. Biobehav. Rev., 44, 94–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Chida and A. Steptoe, “Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence,” Hypertension, 55, No. 4, 1026–1032 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. M. W. Cole, S. Pathak, and W. Schneider, “Identifying the brain’s most globally connected regions,” Neuroimage, 49, No. 4, 3132–3148 (2010).

    Article  PubMed  Google Scholar 

  11. N. R. Cooper, R. J. Croft, S. J. J. Dominey, et al., “Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses,” Int. J. Psychophysiol., 47, 65–74 (2003).

    Article  PubMed  Google Scholar 

  12. N. H. Frijda, “Impulsive action and motivation,” Biol. Psychol., 84, No. 3, 5790–579 (2010).

    Article  Google Scholar 

  13. P. J. Gianaros, L. K. Sheu, K. A. Matthews, et al., “Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala,” J. Neurosci., 28, 990–999 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. J. Gruzelier, “A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration,” Cogn. Process., 10, No. 1, 101–109 (2009).

    Article  Google Scholar 

  15. J. R. Jennings and A. F. Heim, “From brain to behavior: Hypertension’s modulation of cognition and affect,” Int. J. Hypertens., Article ID: 701385 (2012).

  16. W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations: the inhibition-timing hypothesis,” Brain Res. Rev., 53, No. 1, 63–88 (2007).

    Article  PubMed  Google Scholar 

  17. G. G. Knyazev, “EEG delta oscillations as a correlate of basic homeostatic and motivational processes,” Neurosci. Biobehav. Rev., 36, No. 1, 677–695 (2012).

    Article  PubMed  Google Scholar 

  18. P. J. Lang and M. M. Bradley, “Emotion and the motivational brain,” Biol. Psychol., 84, No. 3, 437–450 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  19. H. Laufs, “Multimodal analysis of resting state cortical activity: what does EEG add to our knowledge of resting state BOLD networks?” Neuroimage, 52, No. 4, 1171–1172 (2010).

    Article  PubMed  Google Scholar 

  20. W. R. Lovallo, “Cardiovascular response to stress and disease outcomes: a test of the reactivity hypothesis,” Hypertension, 55, No. 4, 842–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. W. R. Lovallo, “Do low levels of stress reactivity signal poor states of health?” Biol. Psychol., 86, No. 2, 121–128 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  22. B. S. McEwen and P. J. Gianaros, “Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease,” Ann. N.Y. Acad. Sci., 1186, 190–222 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  23. J. A. Meltzer, G. A. Fonzo, and R. T. Constable, “Transverse patterning dissociates human EEG theta power and hippocampal BOLD activation,” Psychophysiol., 46, No. 1, 153–162 (2009).

    Article  Google Scholar 

  24. D. J. Mitchell, N. McNaughton, D. Flanagan, and I. J. Kirk, “Frontalmidline theta from the perspective of hippocampal theta,” Prog. Neurobiol., 86, 156–185 (2008).

    Article  PubMed  Google Scholar 

  25. G. Pfurtscheller, A. Stancák, Jr., and C. Neuper, “Event-related synchronization (ERS) in the alpha band – an electrophysiological correlate of cortical idling: a review,” Int. J. Psychophysiol., 24, No. 1–2, 39–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., 110, No. 11, 1842–1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. S. Raghavachari, J. E. Lisman, M. Tully, et al., “Theta oscillations in human cortex during a working-memory task: evidence for local generators,” J. Psychophysiol., 95, 1630–1638 (2006).

    CAS  Google Scholar 

  28. W. J. Ray and H. W. Cole, “EEG activity during cognitive processing: influence of attentional factors,” Int. J. Psychophysiol., 3, No. 1, 43–48 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. D. L. Schachter, “EEG theta waves and psychological phenomena: a review and analysis,” Biol. Psychol., 5, No. 1, 47–82 (1977).

    Article  Google Scholar 

  30. I. Schalinski, T. R. Elbert, and M. Schauer, “Cardiac defense in response to imminent threat in women with multiple trauma and severe PTSD,” Psychophysiology, 50, 691–700 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. W. W. Seeley, V. Menon, A. F. Schatzberg, et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” J. Neurosci., 27, No. 9, 2349–2356 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. A. Sgoifo, T. Costoli, P. Meerlo, et al., “Individual differences in cardiovascular response to social challenge,” Neurosci. Biobehav. Rev., 29, No. 1, 59–66 (2005).

    Article  PubMed  Google Scholar 

  33. D. Sridharan, D. J. Levitan, and V. Menon, “A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks,” Proc. Natl. Acad. Sci. USA, 105, No. 34, 12,569–12,574 (2008).

    Article  CAS  Google Scholar 

  34. K. S. Taylor, D. A. Seminowicz, and K. D. Davis, “Two systems of resting state connectivity between the insula and cingulate cortex,” Hum. Brain Mapp., 30, No. 9, 2731–2745 (2009).

    Article  PubMed  Google Scholar 

  35. J. F. Thayer, F. Has, M. Fredrikson, et al., “A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability and a marker of stress and health,” Neurosci. Biobehav. Rev., 36, No. 20, 747–756 (2012).

    Article  PubMed  Google Scholar 

  36. J. F. Thayer and R. D. Lane, “Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration,” Neurosci. Biobehav. Res., 33, 81–88 (2009).

    Article  Google Scholar 

  37. F. A. Treiber, T. Kamarck, N. Schneiderman, et al., “Cardiovascular reactivity and development of preclinical and clinical disease states,” Psychosom. Med., 65, 46–62 (2003).

    Article  PubMed  Google Scholar 

  38. J. Vila, P. Guerra, M. A. Munóz, et al., “Cardiac defense: from attention to action,” Int. J. Psychophysiol., 66, No. 3, 169–182 (2007).

    Article  PubMed  Google Scholar 

  39. T. Womelsdorf, K. Johnston, M. Vinck, and S. Everling, “Thetaactivity in anterior cingulate cortex predicts task rules and their adjustments following errors,” Proc. Natl. Acad. Sci. USA, 107, No. 11, 5248–5253 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Aftanas.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 9, No. 11, pp. 1342–1356, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftanas, L.I., Brak, I.V., Reva, N.V. et al. The Oscillatory Systems of the Brain and Individual Variability of the Defensive Cardiac Reflex in Humans. Neurosci Behav Physi 45, 670–679 (2015). https://doi.org/10.1007/s11055-015-0127-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0127-3

Keywords

Navigation