Skip to main content

Advertisement

Log in

Neurochemical Characteristics of Sensory Neurons During Ontogeny

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Sensory neurons constitute a heterogeneous population of neurons with different morphological, receptor, and immunohistochemical characteristics. Most large neurons with myelinated fibers of the Aδ group contain 200-kDal neurofilament protein (NF200), while some small afferent intervertebral ganglion neurons can bind isolectin B4 (IB4). Sensory neurons can contain different types of tyrosine kinase (A, B, and C) and have different neurotransmitter compositions. Neuropeptides are found mainly in neurons of small and intermediate size. The proportion of neurons containing tyrosine kinase A decreases and the proportions of neurons positive for NF200, IB4, substance P, and CGRP increase during early postnatal ontogeny. The growth and development of sensory neurons, especially during the embryonic period, occurs under the influence of neurotrophins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Bersenev, The Cervical Spinal Ganglia, Meditsina, Moscow (1980).

    Google Scholar 

  2. N. B. Gusev, “Intracellular Ca-binding proteins,” Soros. Ograz. Zh., No. 5, 2–9 (1998).

  3. V. A. Zolotarev and A. D. Nozdrachev, “Capsaicin-sensitive vagus nerve afferents,” Ros. Fiziol. Zh., 87, No. 2, 182–204 (2001).

    CAS  Google Scholar 

  4. V. V. Porseva, A. A. Streklov, V. V. Shilkin, and P. M. Maslyukov, “Developmental changes in sensory neurons containing calcitonin gene-related peptide in conditions of afferentation deficiency in rats,” Ontogenez, 43, No. 6, 405–412 (2012).

    CAS  PubMed  Google Scholar 

  5. V. V. Porseva, V. V. Shilkin, M. B. Korzina, et al., “Characteristics of developmental changes in NF200+ neurons in the sensory ganglia of different segmental levels in chemical deafferentation,” Morfologiya, 142, No. 4, 37–42 (2012).

    CAS  Google Scholar 

  6. V. V. Porseva,V. V. Shilkin, M. B. Korzina, et al., “Substance P-immunopositive neurons in the sensory ganglia of rat spinal nerves in postnatal ontogeny,” Morfologiya, 141, No. 1, 75–77 (2012).

    CAS  Google Scholar 

  7. I. S. Raginov and Yu. A. Chelyshev, “Post-traumatic survival of sensory neurons of different subpopulations,” Morfologiya, 125, No. 4, 47–50 (2003).

    Google Scholar 

  8. K. Agerman, J. Hjerling-Leffler, M. P. Blanchard, et al., “BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development,” Development, 30, 1479–1491 (2003).

    Google Scholar 

  9. Y. Aimi, M. Fujimura, S. R. Vincent, and H. Kimura, “Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat,” J. Comp. Neurol., 306, No. 3, 382–392 (1991).

    CAS  PubMed  Google Scholar 

  10. M. S. Airaksinen and M. Meyer, “Most classes of dorsal root ganglion neurons are severely depleted but not absent in mice lacking neurotrophin-3,” Neuroscience, 73, 907–911 (1996).

    CAS  PubMed  Google Scholar 

  11. M. S. Airaksinen and M. Saarma, “The GDNF family: signalling, biological functions and therapeutic value,” Nat. Rev. Neurosci., 3, 383–394 (2002).

    CAS  PubMed  Google Scholar 

  12. A. Ambrus, R. Kraftsik, and I. Barakat-Walter, “Ontogeny of calretinin expression in rat dorsal root ganglia,” Brain Res. Dev. Brain Res., 106, No. 1, 101–108 (1998).

    CAS  PubMed  Google Scholar 

  13. C. Andressen, I. Blumcke, and M. R. Celio, “Calcium-binding proteins: selective markers of nerve cells,” Cell Tiss. Res., 271, 181–208 (1993).

    CAS  Google Scholar 

  14. Y. Aoki, Y. Takahashi, S. Ohtori, et al., “Distribution and immunocytochemical characterization of dorsal root ganglion neurons innervating the lumbar intervertebral disc in rats: a review,” Life Sci., 74, No. 21, 2627–2642 (2004).

    CAS  PubMed  Google Scholar 

  15. U. Arumae, U. Pirvola, J. Palgi, et al., “Neurotrophins and their receptors in rat trigeminal system during maxillary nerve growth,” J. Cell Biol., 122, 1053–1965 (1993).

    CAS  PubMed  Google Scholar 

  16. S. Averill, S. B. McMahon, D. O. Clary, et al., “Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons,” Eur. J. Neurosci., 7, 1484–1494 (1995).

    PubMed Central  CAS  PubMed  Google Scholar 

  17. A. Babes, D. Lorzon, and G. Reid, “Two populations of neurons in rat dorsal root ganglia and their modulation,” J. Neurosci., 20, No. 9, 2276–2282 (2004).

    Google Scholar 

  18. T. Bellido, M. Huening, M. Raval-Pandya, et al., “Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity,” J. Biol. Chem., 275, No. 34, 26328–26332 (2000).

    CAS  PubMed  Google Scholar 

  19. S. C. Benn, M. Costigan, S. Tate, et al., “Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons,” J. Neurosci., 21, No. 16, 6077–6085 (2001).

    CAS  PubMed  Google Scholar 

  20. D. L. Bennett, S. Averill, D. O. Clary, et al., “Postnatal changes in the expression of the trkA high-affinity NGF receptor in primary sensory neurons,” Eur. J. Neurosci., 10, 2204–2208 (1996).

    Google Scholar 

  21. D. L. Bennett, N. Dmitrieva, J. V. Priestley, et al., “trkA, CGRP and IB4 expression in retrogradely labeled cutaneous and visceral primary sensory neurones in the rat,” Neurosci. Lett., 206, 33–36 (1996).

    CAS  PubMed  Google Scholar 

  22. D. L. Bennett, G. J. Michael, N. Ramachandran, et al., “A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurones after nerve injury,” J. Neurosci., 18, 3059–3072 (1998).

    CAS  PubMed  Google Scholar 

  23. D. Bridges, A. S. C. Rice, M. Egertova, et al., “Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridization and immunohistochemistry,” Neuroscience, 119, 803–812 (2003).

    CAS  PubMed  Google Scholar 

  24. C. Bombardi, A. Grandis, A. Nenzi, et al., “Immunohistochemical localization of substance P and cholecystokinin in the dorsal root ganglia and spinal cord of the bottlenose dolphin (Tursiops truncatus),” Anat. Rec. (Hoboken), 293, No. 3, 477–484 (2010).

    CAS  Google Scholar 

  25. A. Cadieux, D. R. Springall, P. K. Mulderry, et al., “Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations,” Neuroscience, 19, 605–627 (1986).

    CAS  PubMed  Google Scholar 

  26. A. J. Camp and R. Wijesinghe, “Calretinin: modulator of neuronal excitability,” Int. J. Biochem. Cell Biol., 41, 2118–2121 (2009).

    CAS  PubMed  Google Scholar 

  27. C. Capano. R. Pernas-Alonso, and U. Poryio, “Neurofilament homeostasis and motoneurone degeneration,” BioEssays, 23, 24–33 (2001).

    CAS  Google Scholar 

  28. P. A. Carr, T. Yamamoto, G. Karmy, et al., “Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin generelated peptide in dorsal root ganglia neurons of rat,” Brain Res., 497, 163–170 (1989).

    CAS  PubMed  Google Scholar 

  29. P. Carroll, G. R. Lewin, M. Koltzenburg, et al., “A role for BDNF in mechanosensation,” Nat. Neurosci., 1, 42–46 (1998).

    CAS  PubMed  Google Scholar 

  30. F. Cervero and J. M. Laird, “Understanding the signaling and transmission of visceral nociceptive events,” J. Neurobiol., 61, 45–54 (2004).

    CAS  PubMed  Google Scholar 

  31. H. H. Chen,W. G. Tourtellotte, and E. Frank, “Muscle spindle-derived neurotrophin 3 regulates synaptic connectivity between muscle sensory and motor neurons,” J. Neurosci., 22, 3512–3519 (2002).

    CAS  PubMed  Google Scholar 

  32. G. Cheron, L. Servais, and B. Dan, “Cerebellar network plasticity: from genes to fast oscillation,” Neuroscience, 153, No. 1, 1–19 (2008).

    CAS  PubMed  Google Scholar 

  33. V. Coppola, J. Kucera, M. E. Palko, et al., “Dissection of NT3 functions in vivo by gene replacement strategy,” Development, 128, 4315–4327 (2001).

    CAS  PubMed  Google Scholar 

  34. A. M. Davies, “Neurotrophins switching: where does it stand?” Curr. Opin. Neurobiol., 18 111–118 (1997).

    Google Scholar 

  35. L. Edvinsson, “CGRP blockers in migraine therapy: where do they act?” Br. J. Pharmacol., 155, No. 7, 967–969 (2008).

    PubMed Central  CAS  PubMed  Google Scholar 

  36. L. Edvinsson, R. Ekman, I. Jansen, et al., “Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects,” J. Cereb. Blood Flow Metab., 7, No. 6, 720–728 (1987).

    CAS  PubMed  Google Scholar 

  37. A. I. Emanuilov,V. V. Shilkin, A. D. Nozdrachev, and P. M. Masliukov, “Afferent innervation of the trachea during postnatal development,” Neuroscience, 120, 68–72 (2005).

    Google Scholar 

  38. P. Enfors, K. F. Lee, and R. Jaenisch, “Mice lacking brain-derived neurotrophic factor develop with sensory deficits,” Nature, 368, 147–150 (1994).

    Google Scholar 

  39. P. Ernfors, K. K. Lee, J. Kucera, and R. Jaenisch, “Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents,” Cell, 77, 503–512 94

  40. U. Ernsberger, “Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia,” Cell Tiss. Res., 336, 349–384 (2009).

    CAS  Google Scholar 

  41. X. Fang, L. Djouhri, S. McMullan, et al., “TrkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors,” J. Neurochem., 25, 4868–4878 (2005).

    CAS  Google Scholar 

  42. I. Farinas, G. A. Wilkinson, C. Backus, et al., “Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo,” Neuron, 21, 325–334 (1998).

    PubMed Central  CAS  PubMed  Google Scholar 

  43. A. Franco-Cereceda, H. Henke, J. M. Lundberg, et al., “Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin,” Peptides, 8, 399–410 (1987).

    CAS  PubMed  Google Scholar 

  44. M. C. Franck, A. Stenqvist, L. Li, et al., “Essential role of Ret for defining non-peptidergic nociceptor phenotypes and functions in the adult mouse,” Eur. J. Neurosci., 33, No. 8, 1385–1400 (2011).

    PubMed  Google Scholar 

  45. B. Gazelius, B. Edwards, L. Olgart, and J. M. Lundberg, “Vasodilatory effects and coexistence of calcitonin gene-related peptide (CGRP) and substance P in sensory nerves of cat dental pulp,” Acta Physiol. Scand., 130, No. 1, 33–40 (1987).

    CAS  PubMed  Google Scholar 

  46. J. P. Golden, M. Hoshi, M. A. Nassar, et al., “RET signaling is required for survival and normal function of non-peptidergic nociceptors,” J. Neurosci., 30, No. 11, 3983–3994 (2010).

    PubMed Central  CAS  PubMed  Google Scholar 

  47. E. V. Goodman and L. L. Iversen, “Calcitonin gene-related peptide: novel neuropeptide,” Life Sci., 38, No. 4, 2169–2178 (1986).

    CAS  PubMed  Google Scholar 

  48. A. K. Hall, X. Ai, G. E. Hickman, et al., “The generation of neuronal heterogeneity in a rat sensory ganglion,” J. Neurosci., 17, 2775–2784 (1997).

    CAS  PubMed  Google Scholar 

  49. C. W. Heizman and K. Braun, “Changes in Ca2+-binding proteins in human neurodegenerative disorders,” Trends Neurosci., 7, 259–264 (1992).

    Google Scholar 

  50. C. J. Helke and K. M. Hill, “Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat,” Neuroscience, 26, 539–551 (1988).

    CAS  PubMed  Google Scholar 

  51. C. J. Helke and A. J. Niederer, “Studies on the coexistence of substance P with other putative transmitters in the nodose and petrosal ganglia,” Synapse, 5, 144–151 (1990).

    CAS  PubMed  Google Scholar 

  52. P. Holzer, “Peptidergic sensory neurons on the control of vascular functions: mechanisms and significance of the cutaneous and splanchnic vascular beds,” Rev. Physiol. Biochem. Pharmacol., 121, 49–146 (1992).

    CAS  PubMed  Google Scholar 

  53. P. Holzer and C. A. Maggi, “Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons,” Neuroscience, 86, 389–398 (1998).

    CAS  PubMed  Google Scholar 

  54. E. J. Huang, G. A. Wilkinson, I. Farinas, et al., “Expression of Trk receptors in the developmental mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC,” Development, 126, 2191–2203 (1999).

    PubMed Central  CAS  PubMed  Google Scholar 

  55. H. Ichikawa, D. M. Jacobowitz, L. Winsky, and C. J. Helke, “Calretinin-immunoreactivity in vagal and glossopharyngeal sensory neurons of the rat: distribution and coexistence with putative transmitter agents,” Brain Res., 557, 3160321 (1991).

    Google Scholar 

  56. H. Ichikawa, A. Rabchevsky, and C. J. Helke, “Presence and coexistence of putative neurotransmitters in carotid sinus baro- and chemoreceptor afferent neurons,” Brain Res., 611, 67–74 (1993).

    CAS  PubMed  Google Scholar 

  57. J. J. Ivanusic, “Size, neurochemistry, and segmental distribution of sensory neurons innervating the rat tibia,” J. Comp. Neurol., 517, 276–283 (2009).

    PubMed  Google Scholar 

  58. K. R. Jones, I. Farinas, C. Backus, and L. F. Reichardt, “Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development,” Cell, 76, 989–999 (1994).

    PubMed Central  CAS  PubMed  Google Scholar 

  59. A. Josephson, J. Widenfalk, A. Trifunovsi, et al., “GDBF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia,” J. Comp. Neurol., 440, No. 2, 204–217 (2001).

    CAS  PubMed  Google Scholar 

  60. H. Kashiba, Y. Uchida, and E. Senba, “Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats,” Brain Res. Mol. Brain Res., 110, 52–62 (2003).

    CAS  PubMed  Google Scholar 

  61. H. Kashiba, Y. Ueda, and E. Semba, “Coexpression of preprotachykinin-A, alpha-calcitonin gene-related peptide, somatostatin, and neurotrophin receptor family messenger RNAs in rat dorsal root ganglion neurons,” Neuroscience, 70, 179–189 (1996).

    CAS  PubMed  Google Scholar 

  62. B. E. Keeler, G. Liu, R. N. Siegfried, et al., “Acute and prolonged hindlimb exercise elicits different gene expression in motoneurons than sensory neurons after spinal cord injury,” Brain Res., 1438, 8–21 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  63. E. Király, V. Gotzos, and M. R. Celio, “In vitro detection of calretinin immunoreactivity in chicken embryo dorsal root ganglion neurons: a possible developmental marker,” Brain Res. Dev. Brain Res., 76, No. 2, 260–263 (1993).

    PubMed  Google Scholar 

  64. S. Kobayashi, E. S. Mwaka, H. Baba, et al., “Microvascular system of the lumbar dorsal root ganglia in rats. Part II: neurogenic control of intraganglionic blood flow,” J. Neurosurg. Spine, 12, No. 2, 203–209 (2010).

    PubMed  Google Scholar 

  65. T. Kondo, T. Oshima, K. Obata, et al., “Role of transient receptor potential A1 in gastric nociception,” Digestion, 82, No. 3, 150–155 (2010).

    CAS  PubMed  Google Scholar 

  66. L. Kramer, M. Sigrist, J. C. de Nooij, et al., “A role for Runx transcription factor signalling in dorsal root ganglion sensory neuron diversification,” Neuron, 49, 379–393 (2006).

    CAS  PubMed  Google Scholar 

  67. J. Kucera, G. Fan, R. Jaenisch, et al., “Dependence of developing group Ia afferents on neurotrophin-3,” J. Comp. Neurol., 363, 307–320 (1995).

    CAS  PubMed  Google Scholar 

  68. J. Kuncová and J. Slaviková, “Vasoactive intestinal polypeptide and calcitonin gene-related peptide in the developing rat heart atria,” Auton. Neurosci., 83, 58–65 (2000).

    PubMed  Google Scholar 

  69. S. N. Lawson and P. J. Waddell, “Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons,” J. Physiol., 435, 41–63 (2001).

    Google Scholar 

  70. D. Lee, A. G. Obukhov, Q. Shen, et al., “Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046-378,” Cell Calcium, 39, 475–485 (2006).

    CAS  PubMed  Google Scholar 

  71. P. LeGreves, F. Nyberg, L. Terenius, and T. Hokfelt, “Calcitonin gene-related peptide is a potent inhibitor of substance P degradation,” Eur. J. Pharmacol., 115, No. 3, 309–311 (1985).

    CAS  Google Scholar 

  72. G. R. Lewin and L. M. Mendell, “Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat,” J. Neurophysiol., 71, 941–949 (1994).

    CAS  PubMed  Google Scholar 

  73. D. J. Liebl, L. J. Klesse, L. Tessarollo, et al., “Loss of brain-derived neurotrophic factor-dependent neural crest-derived sensory neurons in neurotrophic-4 mutant mice,” Proc. Natl. Acad. Sci. USA, 97, 2297–2302 (2000).

    PubMed Central  CAS  PubMed  Google Scholar 

  74. D. L. Liebl, L. Tessarollo, M. E. Palko, and L. F. Parada, “Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice,” J. Neurosci., 17, 9113–9121 (1997).

    CAS  PubMed  Google Scholar 

  75. Y. T. Lin, L. S. Ro, H. L. Wang, and C. J. Chen, “Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study,” Neuroinflammation, 30, No. 8, 126–138 (2011).

    Google Scholar 

  76. T. A. Luger, “Neuromediators – a crucial component of the skin immune system,” J. Dermatol. Sci., 30, No. 2, 87–93 (2002).

    CAS  PubMed  Google Scholar 

  77. W. Luo, S. R. Wickremansinghe, J. M. Savitt, et al., “A hierarchical NGF signaling cascade controls RET-dependent and RET-independent events during development of nonpeptidergic DRG neurons,” Neuron, 54, 739–754 (2007).

    CAS  PubMed  Google Scholar 

  78. W. Lutz, E. M. Frank, T. A. Craig, et al., “Calbindin D28K interacts with Ran-binding protein M: identification of interacting domains by NMR spectroscopy,” Biochem. Biophys. Res. Commun., 303, No. 4, 1186–1192 (2003).

    CAS  PubMed  Google Scholar 

  79. E. Marti, S. J. Gibson, J. M. Polak, et al., “Ontogeny of peptide- and amine-containing neurones in motor sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin,” J. Comp. Neurol., 266, 332–359 (1987).

    CAS  PubMed  Google Scholar 

  80. P. W. McCarthy and S. N. Lawson, “Cell type and conduction velocity of rat primary sensory neurons with calcitonin gene-related peptidelike immunoreactivity,” Neuroscience, 34, 623–632 (1990).

    CAS  PubMed  Google Scholar 

  81. S. B. McMahon, M. P. Armanini, L. L. Ling, and H. S. Phillips, “Expression and coexpression of trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets,” Neuron, 12, 1161–1171 (1994).

    CAS  PubMed  Google Scholar 

  82. D. C. Molliver and W. D. Snider, “Nerve growth factor receptor TrkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons,” J. Comp. Neurol., 381, 428–438 (1997).

    CAS  PubMed  Google Scholar 

  83. D. C. Molliver, M. J. Radeke, S. C. Feinstein, and W. D. Snider, “Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections,” J. Comp. Neurol., 361, 404–416 (1995).

    CAS  PubMed  Google Scholar 

  84. D. C. Molliver, D. E. Wright, M. L. Leitner, et al., “IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life,” Neuron, 19, 849–861 (1997).

    CAS  PubMed  Google Scholar 

  85. J. L. Morris, R. L. Anderson, and I. L. Gibbins, “Neuropeptide Y immunoreactivity in cutaneous sympathetic and sensory neurons during development of the guinea pig,” J. Comp. Neurol., 437, 321–334 (2001).

    CAS  PubMed  Google Scholar 

  86. M. Moshnyakov, U. Arumäe, and M. Saarma, “mRNAs for one, two or three members of trk receptor family are expressed in single rat trigeminal ganglion neurons,” Mol. Brain Res., 43, 141–148 (1996).

    CAS  PubMed  Google Scholar 

  87. F. Nakamura and S. M. Strittmatter, “P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation,” Proc. Natl. Acad. Sci. USA, 93, 10,465–10,470 (1996).

    CAS  Google Scholar 

  88. K. Obata and K. Noguchi, “BDNF in sensory neurons and chronic pain,” Neurosci. Res., 55, No. 1, 1–10 (2006).

    CAS  PubMed  Google Scholar 

  89. S. Ohtori, K. Takahashi, T. Chiba, et al., “Calcitonin gene-related peptide immunoreactive neurons with dichotomizing axons projecting to the lumbar muscle and knee in rats,” Eur. Spine J., 12, 576–580 (2003).

    PubMed Central  PubMed  Google Scholar 

  90. T. D. Patel, A. Jackman, F. L. Rice, et al., “Development of sensory neurons in the absence of NGF/TrkA signaling in vivo,” Neuron, 25, 345–357 (2000).

    CAS  PubMed  Google Scholar 

  91. T. D. Patel, I. Kramer, J. Kucera, et al., “Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents,” Neuron, 38, 403–416 (2003).

    CAS  PubMed  Google Scholar 

  92. G. Paul and A. M. Davies, “Trigeminal sensory neurons requires extrinsic signals to switch neurotrophin dependence during the early stages of target field innervation,” Dev. Biol., 171, 590–605 (1995).

    CAS  PubMed  Google Scholar 

  93. M. J. Perry, S. N. Lawson, and J. Robertson, “Neurofilament immunoreactivity in populations of rat primary afferent neurons: a quantitative study of phosphorylated and nonphosphorylated subunits,” J. Neurocytol., 20, 746–758 (1991).

    CAS  PubMed  Google Scholar 

  94. G. Petho and P. W. Reeh, “Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors,” Physiol. Rev., 92, 1699–1775 (2012).

    CAS  PubMed  Google Scholar 

  95. J. C. Petruska, B. T. Cooper, J. G. Gu, et al., “Distribution of P2X1, P2X2, and P2X3 receptor subunits in rat primary efferents: relation to population markers and specific cell types,” J. Chem. Neuroanat., 20, 141–162 (2000).

    CAS  PubMed  Google Scholar 

  96. H. S. Phillips and M. P. Armanini, “Expression of the trk family of neurotrophin receptors in developing and adult dorsal root ganglion neurons,” Phil. Trans. Roy. Soc. Lond. Biol., 351, 413–416 (1996).

    CAS  Google Scholar 

  97. M. Quartu, M. P. Serra, F. Mascia, et al., “GDNF family ligand receptor components Ret and GFRalpha-1 in the human trigeminal ganglion and sensory nuclei,” Brain Res. Bull., 69, 393–403 (2006).

    CAS  PubMed  Google Scholar 

  98. H. Z. Ruan, E. Moules, and G. Burnstock, “Changes in P2X3 purinoceptors in sensory ganglia of the mouse during embryonic and postnatal development,” Histochem. Cell. Biol., 122, 539–551 (2004).

    CAS  PubMed  Google Scholar 

  99. D. Russo, P. Clavenzani, M. Mazzoni, et al., “Immunohistochemical characterization of TH13-L2 spinal ganglia neurons in sheep (Ovis aries),” Microsc. Res. Tech., 73, No. 2, 128–139 (2010).

    CAS  PubMed  Google Scholar 

  100. H. Schmidt, “Three functional facets of calbindin D-28k,” Front. Mol. Neurosci., 5, 25 (2012).

    PubMed Central  CAS  PubMed  Google Scholar 

  101. B. Schwaller, “The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells,” Biochem. Biophys. Acta 1820, 1294–1303 (2012).

    CAS  PubMed  Google Scholar 

  102. A. M. Shadiack, Y. Sun, and R. E. Zigmond, “Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons,” J. Neurosci., 21, 363–371 (2001).

    CAS  PubMed  Google Scholar 

  103. G. Shaw, C. Yang, R. Ellis, et al., “Hyperphosphorylated neurofilaments NF-H is a serum biomarker of axonal injury,” Biochem. Biophys. Res. Commun., 336, 1268–1277 (2005).

    CAS  PubMed  Google Scholar 

  104. J. D. Silverman and L. Kruger, “Lectin and neuropeptide labeling of separate populations of dorsal root ganglion neurons and associated ‘nociceptor’ thin axons in rat testis and cornea whole-mount preparations,” Somatosens. Res., 5, 259–267 (1988).

    CAS  PubMed  Google Scholar 

  105. I. Silos-Santiago, D. C. Molliver, S. Ozaki, et al., “Non-TrkA-expressing small DRG neurons are lost in trkA-deficient mice,” J. Neurosci., 15, 5929–5942 (1995).

    CAS  PubMed  Google Scholar 

  106. W. D. Snider and S. B. McMahon, “Tackling pain at the source: new ideas about nociceptors,” Neuron, 4, 629–632 (1998).

    Google Scholar 

  107. W. D. Snider and I. Silos-Santiago, “Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development,” Phil. Trans. Roy. Soc. Lond. Biol., 351, 395–403 (1996).

    CAS  Google Scholar 

  108. J. Tajti, R. Uddman, S. Moller, et al., “Messenger molecules and receptor mRNA in the human trigeminal ganglion,” J. Auton. Nerv. Syst., 76, No. 2–3, 176–183 (1999).

    CAS  PubMed  Google Scholar 

  109. G. C. Tender, A. D. Kaye, Y. Y. Li, and J. G. Cui, “Neurotrophin-3 and tyrosine kinase C have modulatory effects on neuropathic pain in the rat dorsal root ganglia,” Neurosurgery, 68, No. 4, 1048–1055 (2011).

    PubMed  Google Scholar 

  110. G. Terenghi, V. Riveros-Moreno, L. D. Hudson, et al., “Immunohistochemistry of nitric oxide synthase demonstrates immunoreactive neurons in spinal cord and dorsal root ganglia of man and rat,” J. Neurol. Sci., 118, 34–37 (1993).

    CAS  PubMed  Google Scholar 

  111. H. Thoeman and Y. A. Barde, “Physiology of nerve growth factor,” Physiol. Rev., 60, 1284–1335 (1980).

    Google Scholar 

  112. J. R. Tonra and L. M. Mendell, “Effects of postnatal anti-NGF on the development of CGRP-IR neurons in the dorsal root ganglion,” J. Comp. Neurol., 392, 489–498 (1998).

    CAS  PubMed  Google Scholar 

  113. F. Torrealba, “Calcitonin gene-related peptide immunoreactivity in the nucleus of the tractus solitarius and the cardiac receptors of the cat originates from peripheral afferents,” neuroscience, 47, 165–173 (1992).

  114. V. M. Verge, P. M. Richardson, Z. Wiesenfeld-Halin, and T. Hökfelt, “Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons,” J. Neurosci., 15, 2081–2096 (1995).

    CAS  PubMed  Google Scholar 

  115. H. Wang, C. Rivero-Melian, B. Robertson, and G. Grant, “Transganglionic transport and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory neurons,” Neuroscience, 62, 539–551 (1994).

    CAS  PubMed  Google Scholar 

  116. I. H. Wei, C. C. Huang, H. M. Chang, et al., “Neuronal NADPHd/NOS expression in the nodose ganglion of severe hypoxic rats with or without mild hypoxic preconditioning,” J. Chem. Neuroanat., 29, 149–156 (2005).

    CAS  PubMed  Google Scholar 

  117. F. A. White, I. Santos-Santiago, D. C. Molliver, et al., “Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia,” J. Neurosci., 16, 4662–4672 (1996).

    CAS  PubMed  Google Scholar 

  118. R. Williams and T. Ebendal, “Neurotrophic receptor expression during development of the chick spinal sensory ganglion,” Neuroreport, 6, 2277–2282 (1995).

    CAS  PubMed  Google Scholar 

  119. Q. Yan, J. L. Elliott, C. Matheson, et al., “Influences of neurotrophins on mammalian motoneurons in vivo,” J. Neurobiol., 24, 1555–1577 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Maslyukov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 7, pp. 777–792, July, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslyukov, P.M., Porseva, V.V., Korzina, M.B. et al. Neurochemical Characteristics of Sensory Neurons During Ontogeny. Neurosci Behav Physi 45, 440–448 (2015). https://doi.org/10.1007/s11055-015-0094-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0094-8

Keywords

Navigation