Skip to main content
Log in

Desorption Strain Kinetics of Gas-Bearing Coal based on Thermomechanical Diffusion–Seepage Coupling

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The characteristics of coal desorption strain play a crucial role in coal permeability, coalbed methane (CBM) recovery, and the prevention of outbursts. This study developed an improved thermomechanical diffusion–seepage (TMDS) coupling model to investigate the strain evolution during the gas desorption process in coal. The model considers the time-varying diffusion coefficient, the Klinkenberg permeability effect, and the impact of moisture on adsorption, amending the traditional coal deformation equation and coal permeability model. Utilizing this model, the study explored the mechanism, contribution, and spatiotemporal evolution of desorption strain, while analyzing quantitatively the effects of gas types and TMDS parameters on the dynamics of desorption strain. The results demonstrate that desorption strain consists of fracture pressure, matrix pressure, desorption action, and temperature effects, with desorption action being the predominant factor. The impact of gas type, especially CO2, on desorption strain is significant, with CO2 enhancing CH4 desorption strain more than N2. Additionally, the study explored the sensitivity of desorption strain to TMDS parameters, revealing that gas pressure, permeability, and Langmuir pressure significantly impact desorption strain. Desorption strain can serve as an indicator for predicting and evaluating the risk of outbursts, and the injection of low-temperature liquid nitrogen could help reduce this risk. This research provides insights for further understanding the desorption mechanism in gas-bearing coal, improving CBM recovery, and preventing disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Bertrand, F., Buzzi, O., & Collin, F. (2019). Cleat-scale modelling of the coal permeability evolution due to sorption-induced strain. International Journal of Coal Geology, 216, 103320.

    Article  CAS  Google Scholar 

  • Chen, D., Pan, Z., Liu, J., & Connell, L. D. (2012). Modeling and simulation of moisture effect on gas storage and transport in coal seams. Energy & Fuels, 26(3), 1695–1706.

    Article  CAS  Google Scholar 

  • Connell, L. D. (2016). A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage. International Journal of Coal Geology, 162, 169–182.

    Article  CAS  Google Scholar 

  • Espinoza, D. N., Vandamme, M., Pereira, J. M., Dangla, P., & Vidal, S. (2014). Measurement and modeling of adsorptive–poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability. International Journal of Coal Geology, 134–135, 80–95.

    Article  Google Scholar 

  • Fan, C., Elsworth, D., Li, S., Chen, Z., Luo, M., Song, Y., & Zhang, H. (2019a). Modelling and optimization of enhanced coalbed methane recovery using CO2/N2 mixtures. Fuel, 253, 1114–1129.

    Article  CAS  Google Scholar 

  • Fan, C., Elsworth, D., Li, S., Zhou, L., Yang, Z., & Song, Y. (2019b). Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery. Energy, 173, 1054–1077.

    Article  CAS  Google Scholar 

  • Gao, F., Xue, Y., Gao, Y., Zhang, Z., Teng, T., & Liang, X. (2016). Fully coupled thermo-hydro-mechanical model for extraction of coal seam gas with slotted boreholes. Journal of Natural Gas Science and Engineering, 31, 226–235.

    Article  Google Scholar 

  • Guo, H., Yu, Y., Wang, K., Yang, Z., Wang, L., & Xu, C. (2023). Kinetic characteristics of desorption and diffusion in raw coal and tectonic coal and their influence on coal and gas outburst. Fuel, 343, 127883.

    Article  CAS  Google Scholar 

  • Guo, H., Yuan, L., Cheng, Y., Wang, K., Xu, C., Zhou, A., et al. (2018). Effect of moisture on the desorption and unsteady-state diffusion properties of gas in low-rank coal. Journal of Natural Gas Science and Engineering, 57, 45–51.

    Article  CAS  Google Scholar 

  • Jia, J., Wang, D., Li, B., Wu, Y., & Zhao, D. (2023a). CO2 adsorption-deformation-percolation characteristics of coals with different degrees of metamorphism and improvement of dynamic prediction model. Fuel, 338, 127384.

    Article  CAS  Google Scholar 

  • Jia, L., Li, B., Li, J., Wang, Z., Wu, X., Gao, Z., & Cheng, Q. (2023b). The effect of stress, pressure and temperature on CBM migration with elastic–plastic deformation. Geoenergy Science and Engineering, 221, 211405.

    Article  CAS  Google Scholar 

  • Li, L., Long, H., Li, S., Lin, H., Qin, L., Bai, Y., & Xiao, T. (2022a). Permeability characteristics of CH4, CO2, and N2 during the whole process of adsorption in coal with accumulated pressure under triaxial stresses. Journal of Petroleum Science and Engineering, 213, 110380.

    Article  CAS  Google Scholar 

  • Li, S., Fan, C., Han, J., Luo, M., Yang, Z., & Bi, H. (2016). A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction. Journal of Natural Gas Science and Engineering, 33, 324–336.

    Article  CAS  Google Scholar 

  • Li, W., Liu, J., Zeng, J., Leong, Y., Elsworth, D., & Tian, J. (2022b). A fully coupled multidomain and multiphysics model considering stimulation patterns and thermal effects for evaluation of coalbed methane (CBM) extraction. Journal of Petroleum Science and Engineering, 214, 110506.

    Article  CAS  Google Scholar 

  • Li, X., Shi, Y., Zeng, J., Zhang, Q., Gao, J., Zhang, L., & Huang, T. (2023). Evolutionary model and experimental validation of gas-bearing coal permeability under negative pressure conditions. ACS Omega, 8(17), 15708–15720.

    Article  CAS  Google Scholar 

  • Li, X., Wang, C., Chen, Y., & Li, H. (2022c). Influence of temperature on gas desorption characterization in the whole process from coals and its application analysis on outburst risk prediction. Fuel, 321, 124021.

    Article  CAS  Google Scholar 

  • Liu, A., Liu, S., Wang, G., & Sang, G. (2020a). Modeling of coal matrix apparent strains for sorbing gases using a transversely isotropic approach. Rock Mechanics and Rock Engineering, 53(9), 4163–4181.

    Article  Google Scholar 

  • Liu, H., Lin, B., Mou, J., & Yang, W. (2020b). Experimental study and modelling of coal stress induced by gas adsorption. Journal of Natural Gas Science and Engineering, 74, 103092.

    Article  CAS  Google Scholar 

  • Liu, H., Yu, B., Lin, B., Li, Q., Mou, J., & Wang, X. (2022a). Coupled effective stress and internal stress for modeling coal permeability. Fuel, 323, 124411.

    Article  CAS  Google Scholar 

  • Liu, L., Yang, M., Zhang, X., Mao, J., & Chai, P. (2021). LNMR experimental study on the influence of gas pressure on methane adsorption law of middle-rank coal. Journal of Natural Gas Science and Engineering, 91, 103949.

    Article  CAS  Google Scholar 

  • Liu, Q., Cheng, Y., Zhou, H., Guo, P., An, F., & Chen, H. (2015). A mathematical model of coupled gas flow and coal deformation with gas diffusion and klinkenberg effects. Rock Mechanics and Rock Engineering, 48(3), 1163–1180.

    Article  Google Scholar 

  • Liu, T., Lin, B., & Yang, W. (2017a). Impact of matrix–fracture interactions on coal permeability: Model development and analysis. Fuel, 207, 522–532.

    Article  CAS  Google Scholar 

  • Liu, T., Lin, B., Yang, W., Liu, T., Kong, J., Huang, Z., et al. (2017b). Dynamic diffusion-based multifield coupling model for gas drainage. Journal of Natural Gas Science and Engineering, 44, 233–249.

    Article  Google Scholar 

  • Liu, T., Zhao, Y., Kong, X., Lin, B., & Zou, Q. (2022b). Dynamics of coalbed methane emission from coal cores under various stress paths and its application in gas extraction in mining-disturbed coal seam. Journal of Natural Gas Science and Engineering, 104, 104677.

    Article  CAS  Google Scholar 

  • Liu, W., Han, D., Xu, H., Chu, X., & Qin, Y. (2023). Modeling of gas migration in a dual-porosity coal seam around a borehole: The effects of three types of driving forces in coal matrix. Energy, 264, 126181.

    Article  CAS  Google Scholar 

  • Lu, S., Li, M., Ma, Y., Wang, S., & Zhao, W. (2022). Permeability changes in mining-damaged coal: A review of mathematical models. Journal of Natural Gas Science and Engineering, 106, 104739.

    Article  CAS  Google Scholar 

  • Lv, A., Aghighi, M., Masoumi, H., & Roshan, H. (2022). On swelling stress–strain of coal and their interaction with external stress. Fuel, 311, 122534.

    Article  CAS  Google Scholar 

  • Majewska, Z., & Ziętek, J. (2007). Changes of acoustic emission and strain in hard coal during gas sorption–desorption cycles. International Journal of Coal Geology, 70(4), 305–312.

    Article  CAS  Google Scholar 

  • Meng, Y., & Li, Z. (2016). Experimental study on diffusion property of methane gas in coal and its influencing factors. Fuel, 185, 219–228.

    Article  CAS  Google Scholar 

  • Meng, Y., & Li, Z. (2018). Experimental comparisons of gas adsorption, sorption induced strain, diffusivity and permeability for low and high rank coals. Fuel, 234, 914–923.

    Article  CAS  Google Scholar 

  • Niu, Q., Cao, L., Sang, S., Zhou, X., Wang, Z., & Wu, Z. (2017). The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals. Energy, 141, 2206–2217.

    Article  CAS  Google Scholar 

  • Pone, J. D. N., Halleck, P. M., & Mathews, J. P. (2010). 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions. International Journal of Coal Geology, 82(3), 262–268.

    Article  CAS  Google Scholar 

  • Pone, J., Hile, M., Halleck, P. M., & Mathews, J. P. (2009). Three-dimensional carbon dioxide-induced strain distribution within a confined bituminous coal. International Journal of Coal Geology, 77(1), 103–108.

    Article  CAS  Google Scholar 

  • Ren, J., Niu, Q., Wang, Z., Wang, W., Yuan, W., Weng, H., et al. (2022). CO2 adsorption/desorption, induced deformation behavior, and permeability characteristics of different rank coals: Application for CO2-Enhanced coalbed methane recovery. Energy & Fuels, 36(11), 5709–5722.

    Article  CAS  Google Scholar 

  • Shi, F., Deng, B., Nie, B., Liu, X., & Liu, P. (2023). Deformation kinetics of coal–gas system during isothermal and dynamic non-isothermal processes. Gas Science and Engineering, 117, 205027.

    Article  CAS  Google Scholar 

  • Shi, F., Wei, Z., Zhang, D., & Huang, G. (2020). Isotherms and kinetics of deformation of coal during carbon dioxide sequestration and their relationship to sorption. International Journal of Coal Geology, 231, 103606.

    Article  CAS  Google Scholar 

  • Shi, R., Liu, J., Wang, X., Elsworth, D., Wang, Z., Wei, M., & Cui, G. (2021). Experimental observations of gas-sorption-induced strain gradients and their implications on permeability evolution of shale. Rock Mechanics and Rock Engineering, 54(8), 3927–3943.

    Article  Google Scholar 

  • Shu, C., Fan, J., Wang, H., Liu, P., & Xu, Y. (2020). Temperature variations of coal in the heading face measured using a thermo-hydro-mechanical model considering desorptional heat. Applied Thermal Engineering, 181, 115969.

    Article  Google Scholar 

  • Song, H., Zhong, Z., & Lin, B. (2023). Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis. Energy, 271, 127054.

    Article  CAS  Google Scholar 

  • Teng, T., Xue, Y., & Zhang, C. (2019). Modeling and simulation on heat-injection enhanced coal seam gas recovery with experimentally validated non-Darcy gas flow. Journal of Petroleum Science and Engineering, 177, 734–744.

    Article  CAS  Google Scholar 

  • Wang, C., Li, X., Liu, L., Tang, Z., & Xu, C. (2023a). Dynamic effect of gas initial desorption in coals with different moisture contents and energy-controlling mechanism for outburst prevention of water injection in coal seams. Journal of Petroleum Science and Engineering, 220, 111270.

    Article  CAS  Google Scholar 

  • Wang, K., Ren, H., Wang, Z., & Wei, J. (2022a). Temperature-pressure coupling effect on gas desorption characteristics in coal during low-variable temperature process. Journal of Petroleum Science and Engineering, 211, 110104.

    Article  CAS  Google Scholar 

  • Wang, K., Wang, G., Jiang, Y., Wang, S., Han, W., & Chen, X. (2019). How transport properties of a shale gas reservoir change during extraction: A strain-dependent triple-porosity model. Journal of Petroleum Science and Engineering, 180, 1088–1100.

    Article  CAS  Google Scholar 

  • Wang, K., Wang, Y., Guo, H., Zhang, J., & Zhang, G. (2021a). Modelling of multiple gas transport mechanisms through coal particle considering thermal effects. Fuel, 295, 120587.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, Z., Li, K., & Chen, H. (2015). Comparison of enhanced coalbed methane recovery by pure N2 and CO2 injection: Experimental observations and numerical simulation. Journal of Natural Gas Science and Engineering, 23, 363–372.

    Article  CAS  Google Scholar 

  • Wang, Y., Kang, J., Zhou, F., Yuan, L., & Pan, Z. (2022b). Evaluation of lost gas in the borehole drilling stage: Implication for the direct method of coalbed methane content determination. Journal of Natural Gas Science and Engineering, 105, 104711.

    Article  CAS  Google Scholar 

  • Wang, Z., Deng, Z., Fu, X., Li, G., Pan, J., Hao, M., & Zhou, H. (2021b). Effects of methane saturation and nitrogen pressure on N2–enhanced coalbed methane desorption strain characteristics of medium-rank coal. Natural Resources Research, 30(2), 1527–1545.

    Article  CAS  Google Scholar 

  • Wang, Z., Fu, X., Hao, M., Li, G., Pan, J., Niu, Q., & Zhou, H. (2021c). Experimental insights into the adsorption-desorption of CH4/N2 and induced strain for medium-rank coals. Journal of Petroleum Science and Engineering, 204, 108705.

    Article  CAS  Google Scholar 

  • Wang, Z., Fu, X., Pan, J., & Deng, Z. (2023c). Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal. Energy, 275, 127377.

    Article  CAS  Google Scholar 

  • Wang, Z., Hao, C., Wang, X., Wang, G., Ni, G., & Cheng, Y. (2023b). Effects of micro-mesopore structure characteristics on methane adsorption capacity of medium rank coal. Fuel, 351, 128910.

    Article  CAS  Google Scholar 

  • Wei, C., & Liu, S. (2023). Determination of diffusion coefficient and convective heat transfer coefficient for non-isothermal desorption-diffusion of gas from coal particles. Fuel, 352, 129144.

    Article  CAS  Google Scholar 

  • Wei, M., Liu, Y., Liu, J., Elsworth, D., & Zhou, F. (2019). Micro-scale investigation on coupling of gas diffusion and mechanical deformation of shale. Journal of Petroleum Science and Engineering, 175, 961–970.

    Article  CAS  Google Scholar 

  • Wu, Y., Liu, J., Elsworth, D., Miao, X., & Mao, X. (2010). Development of anisotropic permeability during coalbed methane production. Journal of Natural Gas Science and Engineering, 2(4), 197–210.

    Article  CAS  Google Scholar 

  • Wu, Y., Liu, J., Elsworth, D., Siriwardane, H., & Miao, X. (2011). Evolution of coal permeability: Contribution of heterogeneous swelling processes. International Journal of Coal Geology, 88(2), 152–162.

    Article  CAS  Google Scholar 

  • Yang, D., Peng, K., Zheng, Y., Chen, Y., Zheng, J., Wang, M., & Chen, S. (2023). Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines. Energy, 268, 126645.

    Article  Google Scholar 

  • Yang, R., Ma, T., Xu, H., Liu, W., Hu, Y., & Sang, S. (2019a). A model of fully coupled two-phase flow and coal deformation under dynamic diffusion for coalbed methane extraction. Journal of Natural Gas Science and Engineering, 72, 103010.

    Article  CAS  Google Scholar 

  • Yang, T., Chen, P., Li, B., Nie, B., Zhu, C., & Ye, Q. (2019b). Potential safety evaluation method based on temperature variation during gas adsorption and desorption on coal surface. Safety Science, 113, 336–344.

    Article  Google Scholar 

  • Zhao, C., Cheng, Y., Li, W., Wang, L., Zhang, K., & Wang, C. (2023). Critical stress related to coalbed methane migration pattern: Model development and experimental validation. Energy, 284, 128681.

    Article  CAS  Google Scholar 

  • Zhao, W., Cheng, Y., Jiang, H., Wang, H., & Li, W. (2017). Modeling and experiments for transient diffusion coefficients in the desorption of methane through coal powders. International Journal of Heat and Mass Transfer, 110, 845–854.

    Article  CAS  Google Scholar 

  • Zhao, Y., Lin, B., & Liu, T. (2020a). Thermo-hydro-mechanical couplings controlling gas migration in heterogeneous and elastically-deformed coal. Computers and Geotechnics, 123, 103570.

    Article  Google Scholar 

  • Zhao, Y., Lin, B., Liu, T., Kong, J., & Zheng, Y. (2020b). Gas flow in hydraulic slotting-disturbed coal seam considering stress relief induced damage. Journal of Natural Gas Science and Engineering, 75, 103160.

    Article  Google Scholar 

  • Zhou, Y., Li, Z., Yang, Y., Wang, M., Gu, F., & Ji, H. (2015). Effect of adsorption-induced matrix deformation on coalbed methane transport analyzed using fractal theory. Journal of Natural Gas Science and Engineering, 26, 840–846.

    Article  CAS  Google Scholar 

  • Zhu, W., Wei, C., Liu, J., Qu, H., & Elsworth, D. (2011). A model of coal–gas interaction under variable temperatures. International Journal of Coal Geology, 86(2), 213–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52004292), and the Guizhou Scientific Support Project (2023 General 430).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengwu Li or Min Hao.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Li, C., Li, Z. et al. Desorption Strain Kinetics of Gas-Bearing Coal based on Thermomechanical Diffusion–Seepage Coupling. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10346-0

Keywords

Navigation