Skip to main content
Log in

Single-event radiation performance analysis of junction and junctionless FET-based low-noise amplifiers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The aim of this study is to analyze the single-event radiation performance of the junction (conventional bulk planar MOSFET) and junctionless FET (bulk planar junctionless device)-based cascoded narrow-band radio frequency (RF) low-noise amplifiers (LNAs). Two LNAs, one based on the conventional MOSFET and another based on the junctionless FET, are investigated for their single-event strike performance using numerical device simulations. The transient simulation results are interpreted in both the time and frequency domains. The collected charge (Qc) is used as a performance metric in the time domain, and the spurious frequencies introduced due to the radiation strike are analyzed in the frequency domain using spectrograms. It is found that, for a given dose, Qc is higher in the junctionless FET LNA. By postprocessing the single event transient (SET) results using Fast Fourier transform (FFT) and spectrogram operations, it is found that the range of the SET spectrum is wider in the junctionless FET LNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Jagannathan, B., Chidambarrao, D., Pekarik, J.: 300 GHz transistor performance in production CMOS technologies. In: 64th Device Research Conference, pp 199–200 (2006)

  2. Dambrine, G., Raynaud, C., Lederer, D., Dehan, M., Rozeau, O., et al.: What are the limiting parameters of deep-submicron MOSFET for high frequency applications. IEEE Electron. Dev. Lett. 24, 189–191 (2003)

    Article  Google Scholar 

  3. Lee, S., Jagannathan, B., Narasimha, S., Chou, A., Zamdmer, N., Johnson, J., Williams, R., 2050 Wagner, L., Kim, J., Plouchart, J.-O., Pekarik, J., Springer, S., Freeman, G.: Record RF 2051 performance of 45 nm SOI CMOS technology. In: IEDM Digest of Technical Papers, pp. 255–258 (2007)

  4. Hossain, M., Chowdhury, M.H.: Comprehensive doping scheme for MOSFETs in ultra-low-power subthreshold circuit design. Microelectron. J. 52, 73–79 (2016)

    Article  Google Scholar 

  5. Guegan, G., Souil, D., Deleonibus, S., Tedesco, S., Laviron, C., Previtali, P., Nier, M.E.: Channel engineering study for 50 nm P-channel MOSFET. In: Proceeding of the 32nd European on Solid-State Device Research Conference 2002, pp. 119–122, 2002

  6. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, P., Razavi, B., O’Neill, A., Blake, M., White, A.M.Kelleher, McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  7. Tai, C.H., Lin, J.T., Eng, Y.C., Lin, P.H.: A novel high-performance junctionless vertical MOSFET produced on bulk-Si wafer. In: Proceedings of the 10th IEEE ICSICT, pp. 108–110 (2010)

  8. Sachid, A.B., Francis, R., Baghini, M.S., Sharma, D.K., Bach, K.-H., Mahnkopf, R., Rao, V.R.: Sub-20 nm gate length FinFET design: can high-κ spacers make a difference? In: IEDM Technical Digest, pp. 697–700 (2008)

  9. Tekleab, D.: Device performance of silicon nanotube field effect transistor. IEEE Electron Device Lett. 35(5), 506–508 (2014)

    Article  Google Scholar 

  10. Trevisoli, R.D., et al.: Surface-potential-based drain current analytical model for triple-gate junctionless nanowire transistors. IEEE Trans. Electron Devices 59, 3510–3518 (2012)

    Article  Google Scholar 

  11. Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Bulk planar junctionless transistor (BPJLT): an attractive device alternative for scaling. IEEE Electron Dev. Lett. 32(03), 261–263 (2011)

    Article  Google Scholar 

  12. Bagatin, M., Gerardin S., Ionizing Radiation Effects in Electronics: From Memories to Imagers, vol. 50. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  13. Marshall, P.W., Dale, C.J., LaBel, K.A.: Space radiation effects in high performance fiber optic data links for satellite data management. IEEE Trans. Nucl. Sci. 43(2), 645–653 (1996)

    Article  Google Scholar 

  14. Oldham, T.R., Friendlich, M.R., Sanders, A.B., Seidleck, C.M., Kim, H.S., Berg, M.D., LaBel, K.A.: TID and SEE response of advanced Samsung and Micron 4G NAND flash memories for the NASA MMS mission. In Proceedings of the IEEE Radiation Effects Data Workshop, pp. 114–122 (2009)

  15. Casey, M.C., Amusan, O.A., Nation, S., Balasubramanian, A., Bhuva, B.L., Alles, M.L., Massengill, L.W., McMorrow, D., Melinger, J.S., Narasimham, B.: Single-event effects on combinational logic circuits operating at ultra-low power. IEEE Trans. Nucl. Sci. 55(6), 3342–3346 (2008)

    Article  Google Scholar 

  16. Chatterjee, I., et al.: Impact of technology scaling on SRAM soft error rates. IEEE Trans. Nucl. Sci. 61(6), 3512–3518 (2014)

    Article  Google Scholar 

  17. Martinie, S., Autran, J.L., Uznanski, S., Roche, P., Gasiot, G., Munteanu, D., Sauze, S.: Alpha-particle induced soft-error rate in CMOS 130 nm SRAM. IEEE Trans. Nucl. Sci. 58(3), 1086–1092 (2011)

    Article  Google Scholar 

  18. Ruckerbauer, F.X., et al.: Soft error rates in 65 nm SRAMs-Analysis of new phenomena. In: Proceedings of the IEEE international on-line testing symposium, pp. 203–204 (2007)

  19. Loveless, T.D., Massengill, L.W., Holman, W.T., Bhuva, B.L., McMorrow, D., Warner, J.H.: A generalized linear model for single event transient propagation in phase-locked loops. IEEE Trans. Nucl. Sci. 57(5), 2933–2947 (2010)

    Article  Google Scholar 

  20. Chen, W., Varanasi, N., Pouget, V., Barnaby, H.J., Vermeire, B., Adell, P.C., Copani, T., Fouillat, P.: Impact of VCO topology on SET induced frequency response. IEEE Trans. Nucl. Sci. 54(6), 2500–2505 (2007)

    Article  Google Scholar 

  21. Golio, M.: RF and Microwave Semiconductor Device Handbook. CRC Press, Boca Raton (2002)

    Google Scholar 

  22. Nguyen, T.K., Kim, C.H., Ihm, G.J., Yang, M.S., Lee, S.G.: CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 52(5), 1433–1442 (2004)

    Article  Google Scholar 

  23. Lourenco, N.E., et al.: An investigation of single-event effect modeling techniques for a SiGe RF low-noise amplifier. IEEE Trans. Nucl. Sci. 63(1), 273–280 (2016)

    Article  Google Scholar 

  24. Mossawir, B.: A TID and SEE radiation-hardened wideband low-noise amplifier. IEEE Trans. Nucl. Sci. 53(6), 3439–3448 (2006)

    Article  Google Scholar 

  25. Rajendiran, P., Srinivasan, R.: Heavy ion impact on narrow band cascoded low noise amplifier. Microelectron. Reliab. 91(Part-1), 31–37 (2018)

    Article  Google Scholar 

  26. Nagy, R., Burenkov, A., Lorenz, J.: Numerical evaluation of the ITRS transistor scaling. J. Comput. Electron. 14, 192–202 (2015)

    Article  Google Scholar 

  27. Cho, H.-J., et al.: Bulk planar 20 nm high-k/metal gate CMOS technology platform for low power and high performance applications. In: International Electron Devices Meeting, pp. 15.1.1–15.1.4 (2011)

  28. Lee, T.H.: The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

  29. Tsui, H.-Y., Jack, L.: SPICE simulation and tradeoffs of CMOS LNA performance with source-degeneration inductor. IEEE Trans. Process. 47(1), 62–65 (2000)

    Google Scholar 

  30. Chitra, P., Ravi, S., Ramakrishnan, V.N.: A soft error study on tri-gate based FinFET and junctionless FinFET 6T SRAM cell—a comparison. TELKOMNIKA Yogyyakarta 14(4), 1299–1306 (2016). https://doi.org/10.12928/telkomnika.v14i4.3458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajendiran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendiran, P., Srinivasan, R. Single-event radiation performance analysis of junction and junctionless FET-based low-noise amplifiers. J Comput Electron 18, 1162–1172 (2019). https://doi.org/10.1007/s10825-019-01370-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01370-y

Keywords

Navigation