Skip to main content
Log in

Growth of TiS2 nanoflakes using CVD approach for sodium-ion battery application

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, synthesis of TiS2 nanoflakes is reported using a home-made CVD furnace. With vaporing sulfur powder in this system, TiS2 nanosheets were grown directly on the Ti powder. The application of these nanoflakes as a possible cathode material for sodium-ion battery has also been investigated. The prepared nanosheets were formed in highly packed clusters with a typical width of around 30 nm and height of 2 µm. The interlayer space between the nanoflakes can provide facile access path for intercalation of sodium ions. The synthesized TiS2 nanoflakes have been implemented for the fabrication of sodium-ion battery cathode electrode, using a 8:1:1 weight ratio of active material:C65: PVDF for slurry preparation, followed by coating on an aluminum current collector. The prepared electrode exhibits an initial reversible capacity (2nd cycle) of 114 mAh g−1 at current density of 66.7 mAg−1. It also showed remarkable coulombic efficiency of 99% after 100 cycles. It also showed superb cycling stability by only 7% decay after 100 cycles. These nanosheets are proposed as a high-performance cathode material for sodium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Delmas C (2018) Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 8(17). https://doi.org/10.1002/aenm.201703137. (Wiley-VCH Verlag)

  2. Kubota K, Komaba S (2015) Review—practical issues and future perspective for na-ion batteries. J Electrochem Soc 162(14):A2538–A2550. https://doi.org/10.1149/2.0151514jes

    Article  CAS  Google Scholar 

  3. Ling C (2022) A review of the recent progress in battery informatics. NPJ Comput Mater 8(1). https://doi.org/10.1038/s41524-022-00713-x

  4. Wang L, Jiang Z, Li W, Gu X, Huang L (2017) Hybrid phosphorene/graphene nanocomposite as an anode material for Na-ion batteries: a first-principles study. J Phys D Appl Phys 50(16). https://doi.org/10.1088/1361-6463/aa5aaf

  5. Zhou W et al (2021) Exploration of MXene/polyaniline composites as promising anode materials for sodium ion batteries. J Phys D Appl Phys 54(6). https://doi.org/10.1088/1361-6463/abc11e

  6. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  7. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. [Online]. Available: www.nature.com

  8. Tapia-Ruiz N et al (2021) 2021 roadmap for sodium-ion batteries. JPhys Energy 3(3). https://doi.org/10.1088/2515-7655/ac01ef

  9. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f. (American Chemical Society)

    Article  CAS  Google Scholar 

  10. Liu Y et al (2016) TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries. Nano Energy 20:168–175. https://doi.org/10.1016/j.nanoen.2015.12.028

    Article  CAS  Google Scholar 

  11. “The demand for lithium-ion.” [Online]. Available: www.nature.com/natrevmats

  12. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614. https://doi.org/10.1039/c6cs00776g. (Royal society of chemistry)

    Article  CAS  Google Scholar 

  13. Deng J, Luo WB, Chou SL, Liu HK, Dou SX (2018) Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater 8(4). https://doi.org/10.1002/aenm.201701428. (Wiley-VCH Verlag)

  14. Li L, Zheng Y, Zhang S, Yang J, Shao Z, Guo Z (2018) Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ Sci 11(9):2310–2340. https://doi.org/10.1039/c8ee01023d. (Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  15. Usiskin R et al (2021) Fundamentals, status and promise of sodium-based batteries. Nat Rev Mater 6(11):1020–1035. https://doi.org/10.1038/s41578-021-00324-w. (Nature Research)

    Article  CAS  Google Scholar 

  16. Vaalma C, Buchholz D, Weil M, Passerini S “A cost and resource analysis of sodium-ion batteries.” [Online]. Available: www.nature.com/natrevmats

  17. Jia Y et al (2020) Hard carbon anode derived from camellia seed shell with superior cycling performance for sodium-ion batteries. J Phys D Appl Phys 53(41). https://doi.org/10.1088/1361-6463/ab9332

  18. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R (2021) Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy 6(2):123–134. https://doi.org/10.1038/s41560-020-00748-8. (Nature Research)

    Article  CAS  Google Scholar 

  19. Ramesh A, Tripathi A, Balaya P (2022) A mini review on cathode materials for sodium-ion batteries. Int J Appl Ceram Technol 19(2):913–923. https://doi.org/10.1111/ijac.13920

    Article  CAS  Google Scholar 

  20. Hu Z et al (2019) Ultrathin 2D TiS 2 nanosheets for high capacity and long-life sodium ion batteries. Adv Energy Mater 9(8). https://doi.org/10.1002/aenm.201803210

  21. Jacobson Allan J (1981) The structures and electrochemical reactions of insertion compounds. Solid State Ionics 5:65–69

    Article  CAS  Google Scholar 

  22. Peng B, Gao J, Sun Z, Li J, Zhang G (2021) High performance sodium-ion full battery based on one-dimensional nanostructures: the case of Na0.44MnO2cathode and MoS2anode. J Phys D Appl Phys 54(1). https://doi.org/10.1088/1361-6463/abb8aa

  23. Hong SY, Kim Y, Park Y, Choi A, Choi NS, Lee KT (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6(7):2067–2081. https://doi.org/10.1039/c3ee40811f

  24. Sahoo R, Singh M, Rao TN (2021) A review on the current progress and challenges of 2D layered transition metal dichalcogenides as Li/Na-ion battery anodes. ChemElectroChem 8(13):2358–2396. https://doi.org/10.1002/celc.202100197. (Wiley)

    Article  CAS  Google Scholar 

  25. Rajapakse M et al (2021) Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Mater Appl 5(1). https://doi.org/10.1038/s41699-021-00211-6. (Nature Research)

  26. Zhan C et al (2018) High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Mater 10(8):775–787. https://doi.org/10.1038/s41427-018-0073-y

    Article  CAS  Google Scholar 

  27. Yun Q, Li L, Hu Z, Lu Q, Chen B, Zhang H (2020) Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv Mater 32(1). https://doi.org/10.1002/adma.201903826. (Wiley-VCH Verlag)

  28. Hu Z, Liu Q, Chou SL, Dou SX (2017) Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater 29(48). https://doi.org/10.1002/adma.201700606. (Wiley-VCH Verlag)

  29. Zhao L et al (2021) TiS2 as negative electrode material for sodium-ion electric energy storage devices. Russ J Phys Chem A 95(9):1955–1961. https://doi.org/10.1134/S0036024421090120

    Article  CAS  Google Scholar 

  30. Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science (1979) 192(4244):1126–1127. https://doi.org/10.1126/science.192.4244.1126

    Article  CAS  Google Scholar 

  31. Chaturvedi A et al (2018) Two dimensional TiS2 as a promising insertion anode for Na-ion battery. ChemistrySelect 3(2):524–528. https://doi.org/10.1002/slct.201702181

    Article  CAS  Google Scholar 

  32. Ryu H-S et al (2013) Electrochemical properties and discharge mechanism of Na/TiS 2 cells with liquid electrolyte at room temperature. J Electrochem Soc 160(2):A338–A343. https://doi.org/10.1149/2.084302jes

    Article  CAS  Google Scholar 

  33. Sun L et al (2021) Chemical vapour deposition. Nat Rev Methods Primers 1(1):5. https://doi.org/10.1038/s43586-020-00005-y

    Article  CAS  Google Scholar 

  34. Takahashi Y, Yamashita T, Takamatsu D, Kumatani A, Fukuma T (2020) Nanoscale kinetic imaging of lithium ion secondary battery materials using scanning electrochemical cell microscopy. Chem Commun 56(65):9324–9327. https://doi.org/10.1039/d0cc02865g

    Article  CAS  Google Scholar 

  35. Mukherjee P, Vishwanath RS, Borenstein A, Zidki T (2023) Compositing redox-rich Co-Co@Ni-Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors. Mater Chem Front. https://doi.org/10.1039/d2qm01162j

    Article  Google Scholar 

  36. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  37. Kim T et al (2020) Applications of voltammetry in lithium ion battery research. J Electrochem Sci Technol 11(1):14–25

    Article  CAS  Google Scholar 

  38. Cymann-Sachajdak A, Graczyk-Zajac M, Trykowski G, Wilamowska-Zawłocka M (2021) Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes. Electrochim Acta 383. https://doi.org/10.1016/j.electacta.2021.138356

Download references

Acknowledgements

The authors thank Mr. S. A Etghani and Mr. Alireza Habibi for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Sanaee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 490 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, P., Ansari, E., Hoornam, S. et al. Growth of TiS2 nanoflakes using CVD approach for sodium-ion battery application. J Nanopart Res 25, 156 (2023). https://doi.org/10.1007/s11051-023-05791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05791-6

Keywords

Navigation