Skip to main content

Advertisement

Log in

Synthesis of 1D WO3 nanostructures using different capping agents for pseudocapacitor applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

To investigate the correlation between electrochemical performance and physicochemical properties, three types of 1D WO3 nanostructures were fabricated by hydrothermal method using K2SO4, Na2SO4, and (NH4)2SO4 as capping agents. Hexagonal phase was obtained with the assistant of Na2SO4 and (NH4)2SO4, while monoclinic phase was developed using K2SO4 as agent. WO3 nanostructures prepared by (NH4)2SO4 and Na2SO4 exhibited superior specific capacitance (400 F/g and 388 F/g) relative to WO3 prepared by K2SO4 (259 F/g), suggesting hexagonal phase is more suitable for energy storage. The nanostructures prepared using Na2SO4 exhibited inferior rate performance compared with those obtained by (NH4)2SO4 due to low specific surface area and high crystallinity. The electrochemical performance demonstrated nanostructures prepared by (NH4)2SO4 was surface-controlled whereas those using Na2SO4 and K2SO4 were battery-type material. These findings raise the prospects of developing tungsten oxide for energy storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vidyavathi GT, Kumar BV, Raghu AV et al (2022) Punica granatum pericarp extract catalyzed green chemistry approach for synthesizing novel ligand and its metal (II) complexes: molecular docking/DNA interactions. J Mol Struct 1249:131656. https://doi.org/10.1016/j.molstruc.2021.131656

    Article  CAS  Google Scholar 

  2. Di J, Li S, Zhao Z et al (2015) Biomimetic CNT@TiO2 composite with enhanced photocatalytic properties. Chem Eng J 281:60–68. https://doi.org/10.1016/j.cej.2015.06.067

    Article  CAS  Google Scholar 

  3. Kannan K, Radhika D, Sadasivuni KK et al (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci 281:102178. https://doi.org/10.1016/j.cis.2020.102178

    Article  CAS  Google Scholar 

  4. Srinivas M, Ch Venkata R, Kakarla RR et al (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mat Res Express 6(12). https://doi.org/10.1088/2053-1591/ab5328

  5. Moshfegh AZ (2009) Nanoparticle catalysts. J Phys D Appl Phys 42(23):233001. https://doi.org/10.1088/0022-3727/42/23/233001

    Article  CAS  Google Scholar 

  6. Goutham R, Narayan R B, Srikanth B et al (2019) Non-metal (Oxygen, Sulphur, Nitrogen, Boron and Phosphorus)-Doped Metal Oxide Hybrid Nanostructures as Highly Efficient Photocatalysts for Water Treatment and Hydrogen Generation. In: Inamuddin et al (ed) Nanophotocatalysis and environmental applications: Materials and Technology. Springer, Switzerland, pp 83–105. https://doi.org/10.1007/978-3-030-10609-6

  7. Di J, Zhu M, Jamakanga R et al (2020) Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for decomposition of rhodamine B. J Water Proc Eng 37(May):101386. https://doi.org/10.1016/j.jwpe.2020.101386

    Article  Google Scholar 

  8. Dakshayini BS, Reddy KR, Mishra A et al (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 147:7–24. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  9. Di J, Fu X, Zheng H et al (2015) H–TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors. J Nanopart Res 17(6). https://doi.org/10.1007/s11051-015-3060-z

  10. Di J, Xu H, Gai X et al (2019) One-step solvothermal synthesis of feather duster-like CNT@WO3 as high-performance electrode for supercapacitor. Mater Lett:246. https://doi.org/10.1016/j.matlet.2019.03.070

  11. Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302:1528–1531. https://doi.org/10.1126/science.1091939

    Article  Google Scholar 

  12. Zhao W, Jiang M, Wang W, Liu S, Huang W, Zhao Q (2021) Flexible transparent supercapacitors: materials and devices. Adv Funct Mater 31:1–30. https://doi.org/10.1002/adfm.202009136

    Article  CAS  Google Scholar 

  13. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352. https://doi.org/10.1016/j.cej.2020.126352

  14. Naskar P, Maiti A, Chakraborty P, Kundu D, Biswas B, Banerjee A (2021) Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. J Mater Chem A 9:1970–2017. https://doi.org/10.1039/D0TA09655E

    Article  CAS  Google Scholar 

  15. Xie XC, Huang KJ, Wu X (2018) Metal–organic framework derived hollow materials for electrochemical energy storage. J Mater Chem A 6:6754–6771. https://doi.org/10.1039/C8TA00612A

    Article  CAS  Google Scholar 

  16. Zhai ZB, Huang KJ, Wu X (2018) Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47:89–95. https://doi.org/10.1016/j.nanoen.2018.02.059

    Article  CAS  Google Scholar 

  17. Xu J, Zhang S, Wei Z, Yan W, Wei X, Huang K (2021) Orientated VSe2 nanoparticles anchored on N-doped hollow carbon sphere for high-stable aqueous energy application. J Colloid Interface Sci 585:12–19. https://doi.org/10.1016/j.jcis.2020.11.065

    Article  CAS  Google Scholar 

  18. Raza MW, Kiran S, Razaq A, Iqbal MF, Hassan A, Hussain S, Ashiq MN, Meng Z (2021) Strategy to enhance the electrochemical characteristics of lanthanum sulfide nanorods for supercapacitor applications. J Nanopart Res 23:207. https://doi.org/10.1007/s11051-021-05307-0

    Article  CAS  Google Scholar 

  19. Shinde PA, Jun SC (2020) Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem. 13:11–38. https://doi.org/10.1002/cssc.201902071

    Article  CAS  Google Scholar 

  20. Qiu M, Sun P, Shen L, Wang K, Song S, Yu X, Tan S, Zhao C, Mai W (2016) WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J Mater Chem A 4:7266–7273. https://doi.org/10.1039/c6ta00237d

    Article  CAS  Google Scholar 

  21. Salkar AV, Naik AP, Bhosale SV, Morajkar PP (2021) Designing a rare DNA-like double helical microfiber superstructure via self-assembly of in situ carbon fiber-encapsulated WO3-x nanorods as an advanced supercapacitor material. ACS Appl Mater Interfaces 13:1288–1300. https://doi.org/10.1021/acsami.0c21105

    Article  CAS  Google Scholar 

  22. Bashir AKH, Morad R, Nwanya AC, Akbari M, Sackey J, Kaviyarasu K, Madiba IG, Ezema FI, Maaza M (2021) Synthesis, characterization and ab initio study of WO3 nanocubes with peculiar electrochemical properties. J Nanopart Res 23:1–11. https://doi.org/10.1007/s11051-021-05142-3

    Article  CAS  Google Scholar 

  23. Lu Y, Zhang J, Wang F, Chen X, Feng Z, Li C (2018) K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB. ACS Appl Energy Mater 1:2067–2077. https://doi.org/10.1021/acsaem.8b00168

    Article  CAS  Google Scholar 

  24. Jia J, Liu X, Mi R, Liu N, Xiong Z, Yuan L, Wang C, Sheng G, Cao L, Zhou X, Liu X (2018) Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors. J Mater Chem A 6:15330–15339. https://doi.org/10.1039/c8ta05292a

    Article  CAS  Google Scholar 

  25. Lin J, Du X (2021) High performance asymmetric supercapacitor based on hierarchical carbon cloth in situ deposited with h-WO3 nanobelts as negative electrode and carbon nanotubes as positive electrode. Micromachines 12. https://doi.org/10.3390/mi12101195

  26. Lokhande V, Lokhande A, Namkoong G, Kim JH, Ji T (2019) Charge storage in WO3 polymorphs and their application as supercapacitor electrode material. Results Phys 12:2012–2020. https://doi.org/10.1016/j.rinp.2019.02.012

    Article  Google Scholar 

  27. Li Y, Chang K, Tang H, Li B, Qin Y, Hou Y, Chang Z (2019) Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance Li-ion batteries. Electrochim Acta 298:640–649. https://doi.org/10.1016/j.electacta.2018.12.137

    Article  CAS  Google Scholar 

  28. Gupta SP, Nishad H, Magdum V, Walke PS (2020) High-performance supercapacitor electrode and photocatalytic dye degradation of mixed-phase WO3 nanoplates. Mater Lett 281:128639. https://doi.org/10.1016/j.matlet.2020.128639

    Article  CAS  Google Scholar 

  29. Choi S, Seo DH, Kaiser MR, Zhang C, Van der laan T, Han ZJ, Bendavid A, Guo X, Yick S, Murdock AT, Su D, Lee BR, Du A, Dou SX, Wang G (2019) WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J Mater Chem A 7:4596–4603. https://doi.org/10.1039/c8ta11646f

    Article  CAS  Google Scholar 

  30. Chu J, Lu D, Wang X, Wang X, Xiong S (2017) WO3 nanoflower coated with graphene nanosheet: synergetic energy storage composite electrode for supercapacitor application. J Alloys Compd 702:568–572. https://doi.org/10.1016/j.jallcom.2017.01.226

    Article  CAS  Google Scholar 

  31. Dharmalingam N, Rajagopal S, Veluswamy P, Paulraj S, Kathirvel V (2022) Facile microwave synthesis of Sn-doped WO3 for pseudocapacitor applications. J Mater Sci Mater Electron 33:9246–9255. https://doi.org/10.1007/s10854-021-07249-8

    Article  CAS  Google Scholar 

  32. Huang Y, Li Y, Zhang G, Liu W, Li D, Chen R, Zheng F, Ni H (2019) Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors. J Alloys Compd 778:603–611. https://doi.org/10.1016/j.jallcom.2018.11.212

    Article  CAS  Google Scholar 

  33. Chen J, Wang H, Deng J, Xu C, Wang Y (2018) Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. J Mater Chem A 6:8986–8991. https://doi.org/10.1039/c8ta01323c

    Article  CAS  Google Scholar 

  34. Ahmadian H, Tehrani FS, Aliannezhadi M (2019) Hydrothermal synthesis and characterization of WO3 nanostructures: effects of capping agent and pH. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab3826

  35. Tehrani FS, Ahmadian H, Aliannezhadi M (2020) Hydrothermal synthesis and characterization of WO3 nanostructures: effect of reaction time. Mater Res Express 7:015911. https://doi.org/10.1088/2053-1591/ab66fc

    Article  CAS  Google Scholar 

  36. Zheng HJ, Zhao ZF, Li SX, Huang YC (2015) Synthesis of WO3 nanowires and selective adsorption of dyes. J Zhejiang U Tec 43:119–123

    Google Scholar 

  37. Jia Q, Ji H, Wang D, Bai X, Sun X, Jin Z (2014) Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J Mater Chem A 2:13602–13611. https://doi.org/10.1039/c4ta01930j

    Article  CAS  Google Scholar 

  38. Barrett EP, Joyner LG (1951) Determination of nitrogen adsorption-desorption isotherms. Anal Chem 23:791–792. https://doi.org/10.1021/ac60053a032

    Article  CAS  Google Scholar 

  39. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS (2010) Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem 20:1683–1690. https://doi.org/10.1039/b918783a

    Article  CAS  Google Scholar 

  40. Tu J, Lei H, Yu Z, Jiao S (2018) Ordered WO3-x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. Chem Commun 54:1343–1346. https://doi.org/10.1039/c7cc09376d

    Article  CAS  Google Scholar 

  41. Seo DB, Yoo S, Dongquoc V, Trung TN, Kim ET (2021) Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3∙0.33H2O phase. J Alloys Compd 888:161587. https://doi.org/10.1016/j.jallcom.2021.161587

    Article  CAS  Google Scholar 

  42. Zhu P, Wang Y, Sun X, Zhang J, Waclawik ER, Zheng Z (2021) Photocatalytic-controlled olefin isomerization over WO3–x using low-energy photons up to 625 nm. Chinese J Catal 42:1641–1647. https://doi.org/10.1016/S1872-2067(21)63815-9

    Article  CAS  Google Scholar 

  43. Liu XD, Yang Q, Yuan L, Qi D, Wei X, Zhou X, Chen S, Cao L, Zeng Y, Jia J, Wang C (2021) Oxygen vacancy-rich WO3 heterophase structure: a trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour. Chem Eng J 425:131431. https://doi.org/10.1016/j.cej.2021.131431

    Article  CAS  Google Scholar 

  44. Chen Z, Peng Y, Liu F, Le Z, Zhu J, Shen G, Zhang D, Wen M, Xiao S, Liu CP, Lu Y, Li H (2015) Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett 15:6802–6808. https://doi.org/10.1021/acs.nanolett.5b02642

    Article  CAS  Google Scholar 

  45. Cong S, Tian Y, Li Q et al (2014) Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications [J]. Adv Mater 26(25):4260–4267. https://doi.org/10.1002/adma.201400447

    Article  CAS  Google Scholar 

  46. Dekanski A, Stevanović J, Stevanović R et al (2001) Glassy carbon electrodes: I. Characterization and electrochemical activation [J]. Carbon 39(8):1195–1205. https://doi.org/10.1016/S0008-6223(00)00228-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yunfei Yang from Shiyanjia Lab (www.shiyanjia.com) for the XPS analysis.

Funding

This study was funded by Zhejiang Provincial Natural Science Foundation of China (grant number LQ18B030002) and Cultivation Project of Scientific Research Achievement Award of Zhejiang University of Science and Technology (grant number 2021JLYB006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Di.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, J., Gai, X., Jamakanga, R. et al. Synthesis of 1D WO3 nanostructures using different capping agents for pseudocapacitor applications. J Nanopart Res 24, 218 (2022). https://doi.org/10.1007/s11051-022-05604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05604-2

Keywords

Navigation