Skip to main content
Log in

Investigating the influence of varying cobalt doping on the cross-sectional widths and surface composition of MnOx nanowires in the context of battery–supercapacitor systems

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nanomaterials based on manganese oxides (MnOx) show considerable potential for large-scale electrochemical energy storage devices, driving significant research to explore their capabilities. One intriguing approach to enhance their performance involves the incorporation of other metals within their structure. Thus, we analyzed hierarchically obtained Cobalt (Co)-doped MnOx nanowires with different Co content, examining their storage properties. Notably, the initial impact of Co was observed in the structural characteristics of MnOx-based nanowires. As the Co content increased, there was a noticeable decrease in the cross-sectional widths of these nanowires. Also, we observed by XRD analysis that Co could effectively substitute manganese (Mn) within the crystal lattice. By XPS, the impact of Co doping on the Mn(IV)/Mn(III) ratio was of particular significance, as this ratio exhibited a direct correlation with the Co content (more Co, higher Mn(IV)/Mn(III) ratio), emphasizing the pivotal role of Co in modulating the oxidation states within these materials. Electrochemical studies revealed a remarkable dual behavior in the nanowires, combining pseudocapacitance and battery-like energy storage characteristics. Notably, our investigation uncovered a distinctive storage performance trend resembling a volcano, with the optimal energy storage material achieved using 1.4 wt.% Co-doped MnOx–Co nanowires. Applying the optimum material for a hybrid supercapacitor application, the energy and power density values were calculated as 48.08 Wh kg−1 and 2339.02 W kg−1, respectively. Thus, we believe that our comprehensive exploration of Co-doped MnOx nanowires provides valuable insights into understanding these materials’ optimization for energy storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available within the article or its supplementary materials.

Data and code availability

Data available on request from the authors.

References

  1. Huang B, Wang H, Liang S et al (2020) Two-dimensional porous cobalt–nickel tungstate thin sheets for high performance supercapattery. Energy Storage Mater 32:105–114. https://doi.org/10.1016/j.ensm.2020.07.014

    Article  Google Scholar 

  2. Gerard O, Numan A, Khalid M et al (2023) Fabrication of binder-free nickel-manganese phosphate battery-type electrode by microwave-assisted hydrothermal technique. J Alloys Compd 941:168878. https://doi.org/10.1016/j.jallcom.2023.168878

    Article  CAS  Google Scholar 

  3. Suller Garcia MA (2022) Electrochemical energy storage and conversion systems—a short review. J Mineral Mater Sci 3:1–2. https://doi.org/10.54026/JMMS/1041

    Article  Google Scholar 

  4. Poonam SK, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  5. Teixeira LT, de Lima SLS, Rosado TF et al (2023) Sustainable cellulose nanofibers-mediated synthesis of uniform spinel Zn-ferrites nanocorals for high performances in supercapacitors. Int J Mol Sci 24:9169. https://doi.org/10.3390/ijms24119169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lakshmi KCS, Vedhanarayanan B (2023) High-performance supercapacitors: a comprehensive review on paradigm shift of conventional energy storage devices. Batteries 9:202. https://doi.org/10.3390/batteries9040202

    Article  CAS  Google Scholar 

  7. Alzaid M, Iqbal MZ, Siddique S, Hadia NMA (2021) Exploring the electrochemical performance of copper-doped cobalt–manganese phosphates for potential supercapattery applications. RSC Adv 11:28042–28051. https://doi.org/10.1039/D0RA09952J

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Afzal AM, Muzaffar N, Iqbal MW et al (2023) Exploring the charge storage mechanism in high-performance Co@MnO2-based hybrid supercapacitors using Randles-Ševčík and Dunn’s models. J Appl Electrochem. https://doi.org/10.1007/s10800-023-01939-3

    Article  Google Scholar 

  9. Ndipingwi MM, Ikpo CO, Nwanya AC et al (2022) Engineering the chemical environment of lithium manganese silicate by Mn ion substitution to boost the charge storage capacity for application in high efficiency supercapattery. Electrochim Acta 414:140180. https://doi.org/10.1016/j.electacta.2022.140180

    Article  CAS  Google Scholar 

  10. Iqbal MZ, Khan J, Gul A et al (2021) Copper doped cobalt-manganese phosphate ternary composites for high-performance supercapattery devices. J Energy Storage 35:102307. https://doi.org/10.1016/j.est.2021.102307

    Article  Google Scholar 

  11. Hao L, Li X, Zhi L (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904. https://doi.org/10.1002/adma.201301204

    Article  CAS  PubMed  Google Scholar 

  12. Zheng SQ, Lim SS, Foo CY et al (2021) Recent progress on the applications of carbonaceous and metal-organic framework nanomaterials for supercapacitors. Front Mater 8:777149. https://doi.org/10.3389/fmats.2021.777149

    Article  Google Scholar 

  13. Maity CK, Hatui G, Sahoo S et al (2019) Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. ChemistrySelect 4:3672–3680. https://doi.org/10.1002/slct.201803560

    Article  CAS  Google Scholar 

  14. Zhi J, Reiser O, Huang F (2016) Hierarchical MnO2 spheres decorated by carbon-coated cobalt nanobeads: low-cost and high-performance electrode materials for supercapacitors. ACS Appl Mater Interfaces 8:8452–8459. https://doi.org/10.1021/acsami.5b12779

    Article  CAS  PubMed  Google Scholar 

  15. Alam F, Iqbal MZ, Alam S, Alhassan N (2021) Binary composites of sonochemically synthesized cobalt phosphates/polyaniline for supercapattery devices. J Energy Storage 42:103150. https://doi.org/10.1016/j.est.2021.103150

    Article  Google Scholar 

  16. Dubal DP, Chodankar NR, Gomez-Romero P, Kim D-H (2017) Fundamentals of binary metal oxide-based supercapacitors. Metal oxides in supercapacitors. Elsevier, Amsterdam, pp 79–98

    Chapter  Google Scholar 

  17. Jayachandran M, Rose A, Maiyalagan T et al (2021) Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim Acta 366:137412. https://doi.org/10.1016/j.electacta.2020.137412

    Article  CAS  Google Scholar 

  18. Yan A-L, Wang W-D, Chen W-Q et al (2019) The synthesis of NiCo2O4–MnO2 core-shell nanowires by electrodeposition and its supercapacitive properties. Nanomaterials 9:1398. https://doi.org/10.3390/nano9101398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong Y, Wang Y, Xu Y et al (2017) Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor. Electrochim Acta 225:39–46. https://doi.org/10.1016/j.electacta.2016.12.109

    Article  CAS  Google Scholar 

  20. Naseri F, Karimi S, Farjah E, Schaltz E (2022) Supercapacitor management system: a comprehensive review of modeling, estimation, balancing, and protection techniques. Renew Sustain Energy Rev 155:111913. https://doi.org/10.1016/j.rser.2021.111913

    Article  CAS  Google Scholar 

  21. Greenhalgh ES, Nguyen S, Valkova M et al (2023) A critical review of structural supercapacitors and outlook on future research challenges. Compos Sci Technol 235:109968. https://doi.org/10.1016/j.compscitech.2023.109968

    Article  CAS  Google Scholar 

  22. Ribeiro GAC, de Lima SLS, Santos KER et al (2023) Zn-doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors. Discover Nano 18:147. https://doi.org/10.1186/s11671-023-03933-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barros FJS, Cardoso KLP, Longo E et al (2023) Facile microwave-assisted hydrothermal synthesis of GdVO4 nanospheres: unlocking their potential as electrodes for supercapacitors. J Mater Sci. https://doi.org/10.1007/s10853-023-08984-5

    Article  Google Scholar 

  24. Alzaid M, Iqbal MZ, Alam S et al (2021) Binary composites of nickel–manganese phosphates for supercapattery devices. J Energy Storage 33:102020. https://doi.org/10.1016/j.est.2020.102020

    Article  Google Scholar 

  25. Shin J, Seo JK, Yaylian R et al (2020) A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. Int Mater Rev 65:356–387. https://doi.org/10.1080/09506608.2019.1653520

    Article  CAS  Google Scholar 

  26. Dai X, Zhang M, Li T et al (2022) Effect of current on electrodeposited MnO2 as supercapacitor and lithium-ion battery electrode. Vacuum 195:110692. https://doi.org/10.1016/j.vacuum.2021.110692

    Article  ADS  CAS  Google Scholar 

  27. Yu ZJ, Dai Y, Chen W (2009) Synthesis of Co2O4 microspheres by hydrothermal-precipitation for electrochemical supercapacitors. Adv Mat Res 66:280–283. https://doi.org/10.4028/www.scientific.net/AMR.66.280

    Article  CAS  Google Scholar 

  28. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567. https://doi.org/10.1021/nl300779a

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Quispe-Garrido V, Cerron-Calle GA, Bazan-Aguilar A et al (2021) Advances in the design and application of transition metal oxide-based supercapacitors. Open Chem 19:709–725. https://doi.org/10.1515/chem-2021-0059

    Article  CAS  Google Scholar 

  30. Zhang Y, Li L, Su H et al (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A Mater 3:43–59. https://doi.org/10.1039/C4TA04996A

    Article  CAS  Google Scholar 

  31. de Lima SLS, Pereira FS, de Lima RB et al (2022) MnO2-Ir nanowires: combining ultrasmall nanoparticle sizes, O-vacancies, and low noble-metal loading with improved activities towards the oxygen reduction reaction. Nanomaterials 12:3039. https://doi.org/10.3390/nano12173039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu J, Bao J, Zhang X et al (2022) MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects. RSC Adv 12:35556–35578. https://doi.org/10.1039/D2RA06664E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pundir S, Upadhyay S, Priya R et al (2023) Synthesis of 1D β-MnO2 for high-performance supercapacitor application. J Solid State Electrochem 27:531–538. https://doi.org/10.1007/s10008-022-05347-z

    Article  CAS  Google Scholar 

  34. Sivakumar S, Nelson Prabu L (2023) Enhancement in electrochemical behavior of cobalt doped α-MnO2 nanoparticles. Inorg Chem Commun 147:110247. https://doi.org/10.1016/j.inoche.2022.110247

    Article  CAS  Google Scholar 

  35. Sahoo S, Naik KK, Rout CS (2015) Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology 26:455401. https://doi.org/10.1088/0957-4484/26/45/455401

    Article  CAS  PubMed  Google Scholar 

  36. Ghaly HA, El-Deen AG, Souaya ER, Allam NK (2019) Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim Acta 310:58–69. https://doi.org/10.1016/j.electacta.2019.04.071

    Article  CAS  Google Scholar 

  37. Guo C, Zhang Y, Yin M et al (2021) Co3O4@Co3S4 core-shell neuroid network for high cycle-stability hybrid-supercapacitors. J Power Sources 485:229315. https://doi.org/10.1016/j.jpowsour.2020.229315

    Article  CAS  Google Scholar 

  38. Murugesan M, Nallamuthu N, Ranjithkumar R et al (2023) Synthesis and electrochemical investigation of hetero bimetallic complexes CoMn2O4 micro rods for novel supercapacitor electrode. Electron Mater Lett 19:108–118. https://doi.org/10.1007/s13391-022-00380-6

    Article  ADS  CAS  Google Scholar 

  39. Ramachandran T, Mourad AI, Raji RK et al (2022) KOH mediated hydrothermally synthesized hexagonal-CoMn2O4 for energy storage supercapacitor applications. Int J Energy Res 46:16823–16838. https://doi.org/10.1002/er.8350

    Article  CAS  Google Scholar 

  40. Xie H, Chen C, He P et al (2022) Promoting H2O/SO2 resistance of Ce-Mn/TiO2 nanostructures by Sb5+/Sb3+ addition for selective catalytic reduction of NO with NH3. Appl Surf Sci 600:154146. https://doi.org/10.1016/j.apsusc.2022.154146

    Article  CAS  Google Scholar 

  41. Graff JW, Zeng X, Dehkordi AM et al (2014) Exceeding the filling fraction limit in CoSb3 skutterudite: multi-role chemistry of praseodymium leading to promising thermoelectric performance. J Mater Chem A 2:8933–8940. https://doi.org/10.1039/C4TA00600C

    Article  CAS  Google Scholar 

  42. Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Naturwissenschaften 14:477–485. https://doi.org/10.1007/BF01507527

    Article  ADS  CAS  Google Scholar 

  43. Jacobsson TJ, Pazoki M, Hagfeldt A, Edvinsson T (2015) Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3. J Phys Chem C 119:25673–25683. https://doi.org/10.1021/acs.jpcc.5b06436

    Article  CAS  Google Scholar 

  44. Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Miner 83:305–315. https://doi.org/10.2138/am-1998-3-414

    Article  ADS  CAS  Google Scholar 

  45. Ilton ES, Post JE, Heaney PJ et al (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci 366:475–485. https://doi.org/10.1016/j.apsusc.2015.12.159

    Article  ADS  CAS  Google Scholar 

  46. Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  ADS  CAS  Google Scholar 

  47. Rodriguez-Romero J, Ruiz de Larramendi I, Goikolea E (2022) Nanostructured manganese dioxide for hybrid supercapacitor electrodes. Batteries 8:263. https://doi.org/10.3390/batteries8120263

    Article  CAS  Google Scholar 

  48. Khaja Hussain Sk, Su Yu J (2019) Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors. Chem Eng J 361:1030–1042. https://doi.org/10.1016/j.cej.2018.12.152

    Article  CAS  Google Scholar 

  49. Kim BC, Justin Raj C, Cho W-J et al (2014) Enhanced electrochemical properties of cobalt doped manganese dioxide nanowires. J Alloys Compd 617:491–497. https://doi.org/10.1016/j.jallcom.2014.08.018

    Article  CAS  Google Scholar 

  50. Haripriya M, Ashok AM, Hussain S, Sivasubramanian R (2021) Nanostructured MnCo2O4 as a high-performance electrode for supercapacitor application. Ionics (Kiel) 27:325–337. https://doi.org/10.1007/s11581-020-03788-y

    Article  CAS  Google Scholar 

  51. Lindström H, Södergren S, Solbrand A et al (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722. https://doi.org/10.1021/jp970490q

    Article  Google Scholar 

  52. Jadhav SM, Kalubarme RS, Suzuki N et al (2021) Cobalt-doped manganese dioxide hierarchical nanostructures for enhancing pseudocapacitive properties. ACS Omega 6:5717–5729. https://doi.org/10.1021/acsomega.0c06150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shrestha KR, Kandula S, Rajeshkhanna G et al (2018) An advanced sandwich-type architecture of MnCo2O4@N–C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. J Mater Chem A Mater 6:24509–24522. https://doi.org/10.1039/C8TA08976K

    Article  CAS  Google Scholar 

  54. Li H, Chen D, Li S et al (2021) Synthesis of mesoporous cobalt-doped manganese oxides for high-performance supercapacitors. Ionics (Kiel) 27:2181–2192. https://doi.org/10.1007/s11581-021-03957-7

    Article  CAS  Google Scholar 

  55. Song Z, Liu W, Zhou Q et al (2020) Cobalt hexacyanoferrate/MnO2 nanocomposite for asymmetrical supercapacitors with enhanced electrochemical performance and its charge storage mechanism. J Power Sources 465:228266. https://doi.org/10.1016/j.jpowsour.2020.228266

    Article  CAS  Google Scholar 

  56. Moon JS, Nulu A, Hwang YG et al (2021) Facile synthesis of porous hollow cobalt-doped λ-MnO2 nano architectures as a high-performance anode material for Li-ion batteries and Li-ion hybrid supercapacitors. ChemistrySelect 6:7012–7024. https://doi.org/10.1002/slct.202102278

    Article  CAS  Google Scholar 

  57. Nasuha S, Pershaanaa M, Bashir S et al (2022) Manganese-doped zinc sulfide binary nanostructures as binder-free electrode materials for supercapattery. J Solid State Electrochem 26:1733–1746. https://doi.org/10.1007/s10008-022-05218-7

    Article  CAS  Google Scholar 

  58. Nasser R, Zhang G-F, Song J-M (2020) Facile and low-cost synthesis of cobalt-doped MnO2 decorated with graphene oxide for high performance 2.3 V aqueous asymmetric supercapacitors. Electrochim Acta 345:136198. https://doi.org/10.1016/j.electacta.2020.136198

    Article  CAS  Google Scholar 

  59. Xu M, Cai Y, Wang T et al (2021) Two-dimensional Mg-doped MnO2@ carbon cloth nanosheets for high performance typical flexible solid supercapacitor. J Alloys Compd 877:160243. https://doi.org/10.1016/j.jallcom.2021.160243

    Article  CAS  Google Scholar 

  60. Singh AK, Sarkar D, Karmakar K et al (2016) High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide–nickel oxide ternary 1D hybrid nanotubes. ACS Appl Mater Interfaces 8:20786–20792. https://doi.org/10.1021/acsami.6b05933

    Article  CAS  PubMed  Google Scholar 

  61. Sivakumar P, Raj CJ, Kulandaivel L et al (2022) Impact of oxygen-defects induced electrochemical properties of three-dimensional flower-like CoMoO4 nanoarchitecture for supercapacitor applications. Int J Energy Res 46:17043–17055. https://doi.org/10.1002/er.8367

    Article  CAS  Google Scholar 

  62. Moniruzzaman M, Anil Kumar Y, Pallavolu MR et al (2022) Two-dimensional core-shell structure of cobalt-doped@MnO2 nanosheets grown on nickel foam as a binder-free battery-type electrode for supercapacitor application. Nanomaterials 12:3187. https://doi.org/10.3390/nano12183187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. More S, Joshi B, Khadka A et al (2023) Oriented attachment of carbon/cobalt-cobalt oxide nanotubes on manganese-doped carbon nanofibers for flexible symmetric supercapacitors. Appl Surf Sci 615:156386. https://doi.org/10.1016/j.apsusc.2023.156386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES)—Finance Code 001—and Fundação de Apoio à Pesquisa do Maranhão (FAPEMA). We also thank Sandra Maria Adelia Belem (Cenobio) for her technical contributions. Samuel da Silva Eduardo thanks EMAP/Porto do Itaqui for his scholarship (BM-08083/22).

Author information

Authors and Affiliations

Authors

Contributions

SSE, PBSF, SLSL, KERS, GACR and WSF: Methodology, Investigation, Data Curation. RBL and BC: Funding, Data Curation. SL, MLG, PV, JS, AHBD: Data Curation, Validation, Writing—review & editing. AGMS and MASG: Conceptualization, Data Curation, Visualization, Writing—original draft, Writing—review & editing, Supervision. All authors reviewed the manuscript

Corresponding authors

Correspondence to Roberto Batista de Lima, Anderson Gabriel Marques da Silva or Marco Aurélio Suller Garcia.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5049 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Eduardo, S., de Figueiredo, P.B.S., de Lima, S.L.S. et al. Investigating the influence of varying cobalt doping on the cross-sectional widths and surface composition of MnOx nanowires in the context of battery–supercapacitor systems. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02090-3

Keywords

Navigation