Skip to main content

Advertisement

Log in

Engineering of “critical nanoscale design parameters” (CNDPs) in PAMAM dendrimer nanoparticles for drug delivery applications

  • Perspectives
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Dendrimers are widely recognized as members of the fourth major architectural class of polymers after linear, cross-linked, and branched architectural types. They have become a desirable polymer category for drug delivery applications based on the ability to readily structure control their six “critical nanoscale design parameters” (CNDPs). These CNDPs include (1) size, (2) shape, (3) surface chemistry, (4) flexibility/rigidity, (5) architecture and (6) elemental composition. The poly(amidoamine) dendrimer (PAMAM) family, first reported by Tomalia et al. in 1985, is one of the most widely investigated dendrimer types for drug delivery. Drugs can either be physically entrapped or chemically conjugated onto dendrimers. Association of drugs with dendrimers depends on numerous factors but mainly on dendrimer architecture. PAMAM dendrimers are available with a variety of surface groups, cores, and generations (i.e., sizes); however, drug associations with dendrimers are most dramatically influenced by the dendrimer’s interior composition, generations (i.e., sizes), and surface chemistries. The physical drug-dendrimer associations are often defined by the periodic dendrimer property patterns which are manifested as a function of dendrimer architecture and generations. Engineering the “critical nanoscale design parameters” (CNDPs) of dendrimers provides a systematic strategy for optimizing dendrimer (host) and drug (guest) relationships. This article discusses the role of CNDPs on guest-host drug entrapment in dendrimers by physical or supramolecular means (i.e., a non-conjugation, formulation type approach).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Cao X, Shen M, Zhang X, Hu J, Wang J, Shi X (2012) Effect of the surface functional groups of dendrimer-entrapped gold nanoparticles on the improvement of PCR. Electrophoresis 33(16):2598–2603

    Article  CAS  Google Scholar 

  • Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery--a potential approach for ocular therapy? J Pharm Pharmacol 66(4):542–556

    Article  CAS  Google Scholar 

  • Chauhan AS (2015) Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann N Y Acad Sci 1348(1):134–140

    Article  CAS  Google Scholar 

  • Chauhan A, Svenson S (2007) Formulations containing hybrid dendrimers. WTO

  • Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV (2003) Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 90(3):335–343

    Article  CAS  Google Scholar 

  • Chauhan AS, Jain NK, Diwan PV, Khopade AJ (2004) Solubility enhancement of indomethacin with poly (amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J Drug Target 12(9–10):575–583

    Article  CAS  Google Scholar 

  • Chauhan A, Svenson S, Reyna L, Tomalia D (2007) Solubility enhancement propensity of PAMAM nanoconstructs. Materials Matters - Nanomaterials issue 2:24–26

    CAS  Google Scholar 

  • Dhanikula RS, Hildgen P (2007) Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials 28(20):3140–3152

    Article  CAS  Google Scholar 

  • Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 276(6):579–617

    Article  CAS  Google Scholar 

  • Kesharwani P, Tekade RK, Jain NK (2015) Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res 32(4):1438–1450

    Article  CAS  Google Scholar 

  • Kujawski M, Rakesh L, Gala K, Jensen A, Fahlman B, Feng ZR, Mohanty DK (2007) Molecular dynamics simulation of polyamidoamine dendrimer-fullerene conjugates: generations zero through four. J Nanosci Nanotechnol 7(4–5):1670–1674

    Article  CAS  Google Scholar 

  • Kulhari H, Pooja D, Prajapati SK, Chauhan AS (2011) Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm 405(1–2):203–209

    Article  CAS  Google Scholar 

  • Kulhari H, Kulhari DP, Prajapati SK, Chauhan AS (2013) Pharmacokinetic and pharmacodynamic studies of poly (amidoamine) dendrimer based simvastatin oral formulations for the treatment of hypercholesterolemia. Mol Pharm 10(7):2528–2533

    Article  CAS  Google Scholar 

  • Kulhari H, Pooja D, Singh MK, Chauhan AS (2015) Optimization of carboxylate-terminated poly (amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev Ind Pharm 41(2):232–238

    Article  CAS  Google Scholar 

  • Lv T, Yu T, Fang Y, Zhang S, Jiang M, Zhang H, Zhang Y, Li Z, Chen H, Gao Y (2017) Role of generation on folic acid-modified poly (amidoamine) dendrimers for targeted delivery of baicalin to cancer cells. Mater Sci Eng C Mater Biol Appl 75:182–190

    Article  CAS  Google Scholar 

  • Menjoge AR, Navath RS, Asad A, Kannan S, Kim CJ, Romero R, Kannan RM (2010) Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates. Biomaterials 31(18):5007–5021

    Article  CAS  Google Scholar 

  • Pani RC, Yingling YG (2012) Role of solvent and dendritic architecture on the redox core encapsulation. J Phys Chem A 116(28):7593–7599

    Article  CAS  Google Scholar 

  • Tekade RK, Tekade M, Kumar M, Chauhan AS (2015) Dendrimer-stabilized smart-nanoparticle (DSSN) platform for targeted delivery of hydrophobic antitumor therapeutics. Pharm Res 32(3):910–928

    Article  CAS  Google Scholar 

  • Tomalia DA (1991) Dendrimer research. Science 252(5010):1231

    Article  CAS  Google Scholar 

  • Tomalia DA (2009) In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res 11(6):1251–1310

    Article  CAS  Google Scholar 

  • Tomalia DA (2012) Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs). New J Chem 36(2):264–281

    Article  CAS  Google Scholar 

  • Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: STARBURST®-dendritic macromolecules. Polym J (Tokyo) 17:117–132

    Article  CAS  Google Scholar 

  • Tomalia D, Naylor AM, Goddard WA III (1990) STARBURST dendrimers: molecular level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29(2):138–175

    Article  Google Scholar 

  • Tomalia DA, Christensen JB and Boas U (2012) Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future: 1–412

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Singh Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the topical collection: Unifying Concepts for Nanoscience and Nanosystems: 20th Anniversary Issue

Donald Tomalia, Paolo Milani and Kenneth Dawson, Co-editors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.S., Kaul, M. Engineering of “critical nanoscale design parameters” (CNDPs) in PAMAM dendrimer nanoparticles for drug delivery applications. J Nanopart Res 20, 226 (2018). https://doi.org/10.1007/s11051-018-4318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4318-z

Keywords

Navigation