Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 284))

  • 2154 Accesses

Abstract

Dendrimers are essentially hyperbranched polymers synthesized in a step-wise manner and show very interesting material properties because of their globular, compact structure and tunable functionality.

We dedicate this article to Bill on his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Smith, F. Diederich, Functional dendrimers: unique biological mimics. Chem. Eur. J. 4, 1353–1361 (1998)

    Article  CAS  Google Scholar 

  2. E. Gillies, J. Frechet, Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005)

    Article  CAS  Google Scholar 

  3. S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications–reflections on the field. Adv. Drug Deliv. Rev. 64, 102–115 (2012)

    Article  Google Scholar 

  4. C. Dufes, I. Uchegbu, A. Schatzlein, Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57, 2177–2202 (2005)

    Article  CAS  Google Scholar 

  5. C. Lee, J. MacKay, J. Frechet, F. Szoka, Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005)

    Article  CAS  Google Scholar 

  6. L.-P. Wu, M. Ficker, J.B. Christensen, P.N. Trohopoulos, S.M. Moghimi, Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjugate Chem. 26(7), 1198–1211 (2015)

    Article  CAS  Google Scholar 

  7. R.M. Kannan, E. Nance, S. Kannan, D.A. Tomalia, Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276, 579–617 (2014)

    Article  CAS  Google Scholar 

  8. A.-M. Caminade, C.-O. Turrin, Dendrimers for drug delivery. J. Mater. Chem. B 2(26), 4055–4066 (2014)

    Article  CAS  Google Scholar 

  9. Y.-Q. Ma et al., Theoretical and computational studies of dendrimers as delivery vectors. Chem. Soc. Rev. 42(2), 705–727 (2013)

    Article  Google Scholar 

  10. P. Bhattacharya, N.K. Geitner, S. Sarupria, P.C. Ke, Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications. Phys. Chem. Chem. Phys. 15(13), 4477–4490 (2013)

    Article  CAS  Google Scholar 

  11. D. Astruc, Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat. Chem. 4, 255–267 (2012)

    Article  CAS  Google Scholar 

  12. D. Wang, D. Astruc, Dendritic catalysis–basic concepts and recent trends. Coord. Chem. Rev. 257, 2317–2334 (2013)

    Article  CAS  Google Scholar 

  13. T.S. Ahn, A.L. Thompson, P. Bharathi, A. Muller, C.J. Bardeen, Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: the role of delocalized excited states and the scaling of light-harvesting efficiency with dendrimer size. J. Phys. Chem. B 110, 19810–19819 (2006)

    Article  CAS  Google Scholar 

  14. D. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A new class of polymers–starburst-dendritic macromolecules. Polym. J. 17(1), 117–132 (1985)

    Article  CAS  Google Scholar 

  15. D. Tomalia, A. Naylor, W.A. Goddard III, Starburst dendrimers–molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 29, 138–175 (1990)

    Google Scholar 

  16. A. Bosman, H. Janssen, E. Meijer, About dendrimers: structure, physical properties, and applications. Chem. Rev. 99, 1665–1688 (1999)

    Article  CAS  Google Scholar 

  17. B. Helms, E.W. Meijer, Dendrimers at work. Science 313, 929–930 (2006)

    Article  CAS  Google Scholar 

  18. E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9(1), 247 (2014)

    Article  Google Scholar 

  19. C. Gao, D. Yan, Hyperbranched polymers: from synthesis to applications. Prog. in Polym. Sci. 29(3), 183–275 (2004)

    Article  CAS  Google Scholar 

  20. K. Sadler, J.P. Tam, Peptide dendrimers: applications and synthesis. Rev. Mol. Biotechnol. 90(3), 195–229 (2002)

    Article  CAS  Google Scholar 

  21. G. Newkome, C. Moorefield, F. Vogtle, Dendrimers and dendrons: concepts, syntheses. Perspectives (2001)

    Google Scholar 

  22. D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17(1), 117–132 (1985)

    Article  CAS  Google Scholar 

  23. D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19(9), 2466–2468 (1986)

    Article  CAS  Google Scholar 

  24. T.R. Krishna, N. Jayaraman, Synthesis of poly(propyl ether imine) dendrimers and evaluation of their cytotoxic properties. J. Org. Chem. 68(25), 9694–9704 (2003)

    Article  CAS  Google Scholar 

  25. G. Jayamurugan, N. Jayaraman, Synthesis of large generation poly(propyl ether imine) (PETIM) dendrimers. Tetrahedron 62(41), 9582–9588 (2006)

    Article  CAS  Google Scholar 

  26. S. Kanchi, G. Suresh, U.D. Priyakumar, K.G. Ayappa, P.K. Maiti, Molecular dynamics study of the structure, flexibility, and hydrophilicity of PETIM dendrimers: a comparison with PAMAM dendrimers. J. Phys. Chem. B 119(41), 12990–13001 (2015). PMID: 26378813

    Article  CAS  Google Scholar 

  27. A.K. Patri, J.F. Kukowska-Latallo, J.R. Baker, Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 57(15), 2203–2214 (2005)

    Article  CAS  Google Scholar 

  28. A.U. Bielinska, C. Chen, J. Johnson, J.R. Baker, DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjugate Chem. 10(5), 843–850 (1999)

    Article  CAS  Google Scholar 

  29. B. Nandy, P.K. Maiti, DNA compaction by a dendrimer. J. Phys. Chem. B 115(2), 217–230 (2010)

    Article  Google Scholar 

  30. C.Z. Chen, S.L. Cooper, Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16), 3359–3368 (2002)

    Article  CAS  Google Scholar 

  31. Y.-Q. Ma et al., pH-responsive dendrimers interacting with lipid membranes. Soft Matter 8(9), 2627–2632 (2012)

    Article  Google Scholar 

  32. I. Majoros, A. Myc, T. Thomas, C. Mehta, J. Baker, PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7, 572–579 (2006)

    Article  CAS  Google Scholar 

  33. D. Luo, K. Haverstick, N. Belcheva, E. Han, W. Saltzman, Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35, 3456–3462 (2002)

    Article  CAS  Google Scholar 

  34. L.B. Jensen, K. Mortensen, G.M. Pavan, M.R. Kasimova, D.K. Jensen, V. Gadzhyeva, H.M. Nielsen, C. Foged, Molecular characterization of the interaction between siRNA and PAMAM G7 dendrimers by SAXS, ITC, and molecular dynamics simulations. Biomacromolecules 11, 3571–3577 (2010)

    Article  CAS  Google Scholar 

  35. A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A. Patri, T. Thomas, J. Mule, J. Baker, Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19, 1310–1316 (2002)

    Article  CAS  Google Scholar 

  36. I. Tanis, K. Karatasos, Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly(amidoamine) dendrimer as studied by molecular dynamics simulations. J. Phys. Chem. B 113, 10984–10993 (2009)

    Article  CAS  Google Scholar 

  37. S. Yu, R.G. Larson, Monte-Carlo simulations of PAMAM dendrimer-DNA interactions. Soft Matter 10(29), 5325–5336 (2014)

    Article  CAS  Google Scholar 

  38. L. Yang, S.R.P. da Rocha, PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations. Mol. Pharm. 11, 1459–1470 (2014)

    Article  CAS  Google Scholar 

  39. T. Mandal, C. Dasgupta, P.K. Maiti, Nature of the effective interaction between dendrimers. J. Chem. Phys. 141 (2014)

    Google Scholar 

  40. T. Mandal, M.V.S. Kumar, P.K. Maiti, DNA assisted self-assembly of PAMAM dendrimers. J. Phys. Chem. B 118, 11805–11815 (2014)

    Article  CAS  Google Scholar 

  41. V. Vasumathi, D. Pramanik, A.K. Sood, P.K. Maiti, Structure of a carbon nanotube-dendrimer composite. Soft Matter 9(4), 1372–1380 (2013)

    Article  CAS  Google Scholar 

  42. S. Kavyani, S. Arnjad-Iranagh, H. Modarress, Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study. J. Phys. Chem. B 118, 3257–3266 (2014)

    Article  CAS  Google Scholar 

  43. D. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Dendritic macromolecules—synthesis of starburst dendrimers. Macromolecules 19, 2466–2468 (1986)

    Google Scholar 

  44. T. Krishna, N. Jayaraman, Synthesis of poly(propyl ether imine) dendrimers and evaluation of their cytotoxic properties. J. Org. Chem. 68, 9694–9704 (2003)

    Article  CAS  Google Scholar 

  45. U.P. Thankappan, S.N. Madhusudana, A. Desai, G. Jayamurugan, Y.B.R.D. Rajesh, N. Jayaraman, Dendritic poly(ether imine) based gene delivery vector. Bioconjugate Chem. 22, 115–119 (2011)

    Article  CAS  Google Scholar 

  46. S. Jain, A. Kaur, R. Puri, P. Utreja, A. Jain, M. Bhide, R. Ratnam, V. Singh, A.S. Patil, N. Jayaraman, G. Kaushik, S. Yadav, K.L. Khanduja, Poly propyl ether imine (PETIM) dendrimer: a novel non-toxic dendrimer for sustained drug delivery. Eur. J. Med. Chem. 45, 4997–5005 (2010)

    Article  CAS  Google Scholar 

  47. V. Vasumathi, P.K. Maiti, Complexation of siRNA with dendrimer: a molecular modeling approach. Macromolecules 43, 8264–8274 (2010)

    Article  CAS  Google Scholar 

  48. G. Jayamurugan, K.S. Vasu, Y.B.R.D. Rajesh, S. Kumar, V. Vasumathi, P.K. Maiti, A.K. Sood, N. Jayaraman, Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers. J. Chem. Phys. 134 (2011)

    Google Scholar 

  49. N. Suleman, R.S. Kalhapure, C. Mocktar, S. Rambharose, M. Singh, T. Govender, Silver salts of carboxylic acid terminated generation 1 poly(propyl ether imine) (PETIM) dendron and dendrimers as antimicrobial agents against S. aureus and MRSA. RSC Adv. 5(44), 34967–34978 (2015)

    Google Scholar 

  50. V. Maingi, V. Jain, P.V. Bharatam, P.K. Maiti, Dendrimer building toolkit: model building and characterization of various dendrimer architectures. J. Comput. Chem. 33(25), 1997–2011 (2012)

    Article  CAS  Google Scholar 

  51. D.J. Price, C.L. Brooks III, A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121(20), 10096–10103 (2004)

    Article  CAS  Google Scholar 

  52. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690 (2010)

    CAS  Google Scholar 

  53. I. Vorobyov, V.M. Anisimov, S. Greene, R.M. Venable, A. Moser, R.W. Pastor, A.D. MacKerell, Additive and classical Drude polarizable force fields for linear and cyclic ethers. J. Chem. Theory Comput. 3(3), 1120–1133 (2007)

    Article  CAS  Google Scholar 

  54. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  CAS  Google Scholar 

  55. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  CAS  Google Scholar 

  56. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  CAS  Google Scholar 

  57. G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101(5), 4177–4189 (1994)

    Article  CAS  Google Scholar 

  58. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an \(n\cdot \log (n)\) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  CAS  Google Scholar 

  59. J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977)

    Article  CAS  Google Scholar 

  60. C. Jana, G. Jayamurugan, R. Ganapathy, P.K. Maiti, N. Jayaraman, A. Sood, Structure of poly(propyl ether imine) dendrimer from fully atomistic molecular dynamics simulation and by small angle X-ray scattering. J. Chem. Phys. 124 (2006)

    Google Scholar 

  61. P.K. Maiti, T. Cagin, S.T. Lin, W.A. Goddard III, Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 38, 979–991 (2005)

    Google Scholar 

  62. P.K. Maiti, T. Cagin, G. Wang, W.A. Goddard III, Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37, 6236–6254 (2004)

    Google Scholar 

  63. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, 2004)

    Google Scholar 

  64. J. Rudnick, G. Gaspari, The aspherity of random walks. J. Phys. A: Math. Gen. 19(4), L191 (1986)

    Article  Google Scholar 

  65. S.T. Lin, P.K. Maiti, W.A. Goddard III, Dynamics and thermodynamics of water in PAMAM dendrimers at subnanosecond time scales. J. Phys. Chem. B 109, 8663–8672 (2005)

    Google Scholar 

  66. R. Bhattacharya, S. Kanchi, C. Roobala, A. Lakshminarayanan, O.H. Seeck, P.K. Maiti, K.G. Ayappa, N. Jayaraman, J.K. Basu, A new microscopic insight into membrane penetration and reorganization by PETIM dendrimers. Soft Matter 10(38), 7577–7587 (2014)

    Article  CAS  Google Scholar 

  67. P.K. Maiti, Y. Li, T. Cagin, W.A. Goddard III, Structure of polyamidoamide dendrimers up to limiting generations: a mesoscale description. J. Chem. Phys. 130(14), 144902 (2009)

    Article  Google Scholar 

  68. P.K. Maiti, B. Bagchi, Diffusion of flexible, charged, nanoscopic molecules in solution: size and pH dependence for PAMAM dendrimer. J. Chem. Phys. 131(21), 214901 (2009)

    Article  Google Scholar 

  69. P.K. Maiti, PAMAM dendrimer: a pH controlled nanosponge (Can. J, Chem, 2017)

    Google Scholar 

  70. P.K. Maiti, W.A. Goddard III, Solvent quality changes the structure of G8 PAMAM dendrimer, a disagreement with some experimental interpretations. J. Phys. Chem. B 110(51), 25628–25632 (2006). PMID: 17181199

    Google Scholar 

  71. P.K. Maiti, R. Messina, Counterion distribution and \(\zeta \)-potential in PAMAM dendrimer. Macromolecules 41(13), 5002–5006 (2008)

    Article  CAS  Google Scholar 

  72. A. Villaverde, Nanoparticles in Translational Science and Medicine, vol. 104 (Academic, 2011)

    Google Scholar 

  73. M. Estanqueiro, M.H. Amaral, J. Conceição, J.M.S. Lobo, Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf. B: Biointerfaces 126, 631–648 (2015)

    Article  CAS  Google Scholar 

  74. M.P. Desai, V. Labhasetwar, G.L. Amidon, R.J. Levy, Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13(12), 1838–1845 (1996)

    Article  CAS  Google Scholar 

  75. S. Majd, E.C. Yusko, Y.N. Billeh, M.X. Macrae, J. Yang, M. Mayer, Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr. Opin. Biotechnol. 21(4), 439–476 (2010)

    Article  CAS  Google Scholar 

  76. X.-A. Ton, V. Acha, K. Haupt, B.T.S. Bui, Direct fluorimetric sensing of uv-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization. Biosens. Bioelectron. 36(1), 22–28 (2012)

    Article  CAS  Google Scholar 

  77. A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B: Biointerfaces 75(1), 1–18 (2010)

    Article  CAS  Google Scholar 

  78. E. Ghorbani-Kalhor, M. Behbahani, J. Abolhasani, Application of ion-imprinted polymer nanoparticles for selective trace determination of palladium ions in food and environmental samples with the aid of experimental design methodology. Food Anal. Methods 8(7), 1746–1757 (2015)

    Article  Google Scholar 

  79. E. Buhleier, W. Wehner, F. Vogtle, “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978(2), 155–158 (1978)

    Google Scholar 

  80. S.-E. Stiriba, H. Frey, R. Haag, Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Ed. 41(8), 1329–1334 (2002)

    Article  CAS  Google Scholar 

  81. A. D’emanuele, D. Attwood, Dendrimer–drug interactions. Adv. Drug Deliv. Rev. 57(15), 2147–2162 (2005)

    Google Scholar 

  82. A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today 15(5), 171–185 (2010)

    Article  CAS  Google Scholar 

  83. P. Kesharwani, A.K. Iyer, Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 20(5), 536–547 (2015)

    Article  CAS  Google Scholar 

  84. V. Jain, P.K. Maiti, P.V. Bharatam, Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations. J. Chem. Phys. 145(12), 124902 (2016)

    Article  Google Scholar 

  85. E.R. Gillies, J.M. Frechet, Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10(1), 35–43 (2005)

    Article  CAS  Google Scholar 

  86. Q. Lin, G. Jiang, K. Tong, Dendrimers in drug-delivery applications. Des. Monomers Polym. 13(4), 301–324 (2010)

    Article  CAS  Google Scholar 

  87. A.K. Patri, I.J. Majoros, J.R. Baker, Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 6(4), 466–471 (2002)

    Article  CAS  Google Scholar 

  88. Y. Cheng, Z. Xu, M. Ma, T. Xu, Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 97(1), 123–143 (2008)

    Article  CAS  Google Scholar 

  89. C.M. Paleos, D. Tsiourvas, Z. Sideratou, L. Tziveleka, Acid-and salt-triggered multifunctional poly (propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules 5(2), 524–529 (2004)

    Article  CAS  Google Scholar 

  90. D.A. Tomalia, L. Reyna, S. Svenson, Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 35, 61–67 (2007)

    Article  CAS  Google Scholar 

  91. J. Zhu, X. Shi, Dendrimer-based nanodevices for targeted drug delivery applications. J. Mater. Chem. B 1(34), 4199–4211 (2013)

    Article  CAS  Google Scholar 

  92. T. Mandal, C. Dasgupta, P.K. Maiti, Engineering gold nanoparticle interaction by PAMAM dendrimer. J. Phys. Chem. C 117(26), 13627–13636 (2013)

    Article  CAS  Google Scholar 

  93. A.T. Florence, N. Hussain, Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv. Drug Deliv. Rev. 50, S69–S89 (2001)

    Article  CAS  Google Scholar 

  94. R. Esfand, D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6(8), 427–436 (2001)

    Article  CAS  Google Scholar 

  95. R. Göller, J.-P. Vors, A.-M. Caminade, J.-P. Majoral, Phosphorus dendrimers as new tools to deliver active substances. Tetrahedron Letters 42(21), 3587–3590 (2001)

    Article  Google Scholar 

  96. V. Maingi, M.V.S. Kumar, P.K. Maiti, PAMAM dendrimer-drug interactions: effect of ph on the binding and release pattern. J. Phys. Chem. B 116(14), 4370–4376 (2012). PMID: 22420638

    Article  CAS  Google Scholar 

  97. A. Biffi, E. Montini, L. Lorioli, M. Cesani, F. Fumagalli, T. Plati, C. Baldoli, S. Martino, A. Calabria, S. Canale, F. Benedicenti, G. Vallanti, L. Biasco, S. Leo, N. Kabbara, G. Zanetti, W.B. Rizzo, N.A.L. Mehta, M.P. Cicalese, M. Casiraghi, J.J. Boelens, U. Del Carro, D.J. Dow, M. Schmidt, A. Assanelli, V. Neduva, C. Di Serio, E. Stupka, J. Gardner, C. von Kalle, C. Bordignon, F. Ciceri, A. Rovelli, M.G. Roncarolo, A. Aiuti, M. Sessa, L. Naldini, Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341(6148) (2013)

    Google Scholar 

  98. C.A. Alabi, K.T. Love, G. Sahay, H. Yin, K.M. Luly, R. Langer, D.G. Anderson, Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl. Acad. Sci. 110(32), 12881–12886 (2013)

    Article  CAS  Google Scholar 

  99. J. Yang, W. Hendricks, G. Liu, J.M. McCaffery, K.W. Kinzler, D.L. Huso, B. Vogelstein, S. Zhou, A nanoparticle formulation that selectively transfects metastatic tumors in mice. Proc. Natl. Acad. Sci. 110(36), 14717–14722 (2013)

    Article  CAS  Google Scholar 

  100. A.R. Kirtane, J. Panyam, Polymer nanoparticles: weighing up gene delivery. Nat. Nanotechnol. 8(11), 805–806 (2013)

    Article  CAS  Google Scholar 

  101. K.A. Whitehead, R. Langer, D.G. Anderson, Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8(2), 129–138 (2009)

    Article  CAS  Google Scholar 

  102. D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4(7), 581–593 (2005)

    Article  CAS  Google Scholar 

  103. D.J. Siegwart, K.A. Whitehead, L. Nuhn, G. Sahay, H. Cheng, S. Jiang, M. Ma, A. Lytton-Jean, A. Vegas, P. Fenton, C.G. Levins, K.T. Love, H. Lee, C. Cortez, S.P. Collins, Y.F. Li, J. Jang, W. Querbes, C. Zurenko, T. Novobrantseva, R. Langer, D.G. Anderson, Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. 108(32), 12996–13001 (2011)

    Article  CAS  Google Scholar 

  104. J. Zhou, J. Liu, C.J. Cheng, T.R. Patel, C.E. Weller, J.M. Piepmeier, Z. Jiang, W.M. Saltzman, Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater. 11(1), 82–90 (2012)

    Article  CAS  Google Scholar 

  105. J.E. Zuckerman, C.H.J. Choi, H. Han, M.E. Davis, Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl. Acad. Sci. 109(8), 3137–3142 (2012)

    Article  CAS  Google Scholar 

  106. G. Sahay, W. Querbes, C. Alabi, A. Eltoukhy, S. Sarkar, C. Zurenko, E. Karagiannis, K. Love, D. Chen, R. Zoncu et al., Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31(7), 653–658 (2013)

    Article  CAS  Google Scholar 

  107. S.C. Semple, A. Akinc, J. Chen, A.P. Sandhu, B.L. Mui, C.K. Cho, D.W. Sah, D. Stebbing, E.J. Crosley, E. Yaworski et al., Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28(2), 172–176 (2010)

    Article  CAS  Google Scholar 

  108. A.J. Geall, A. Verma, G.R. Otten, C.A. Shaw, A. Hekele, K. Banerjee, Y. Cu, C.W. Beard, L.A. Brito, T. Krucker, D.T. O’Hagan, M. Singh, P.W. Mason, N.M. Valiante, P.R. Dormitzer, S.W. Barnett, R. Rappuoli, J.B. Ulmer, C.W. Mandl, Nonviral delivery of self-amplifying rna vaccines. Proc. Natl. Acad. Sci. 109(36), 14604–14609 (2012)

    Article  CAS  Google Scholar 

  109. L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal, M.J. Wood, Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29(4), 341–345 (2011)

    Article  CAS  Google Scholar 

  110. V. Gopal, Bioinspired peptides as versatile nucleic acid delivery platforms. J. Control. Release 167, 323–332 (2013)

    Article  CAS  Google Scholar 

  111. J.-M. Williford, J. Wu, Y. Ren, M.M. Archang, K.W. Leong, H.-Q. Mao, Recent advances in nanoparticle-mediated siRNA delivery. Annu. Rev. Biomed. Eng. 16, 347–370 (2014)

    Article  CAS  Google Scholar 

  112. A.C. Bonoiu, S.D. Mahajan, H. Ding, I. Roy, K.-T. Yong, R. Kumar, R. Hu, E.J. Bergey, S.A. Schwartz, P.N. Prasad, Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. 106(14), 5546–5550 (2009)

    Article  CAS  Google Scholar 

  113. R. Maeda-Mamiya, E. Noiri, H. Isobe, W. Nakanishi, K. Okamoto, K. Doi, T. Sugaya, T. Izumi, T. Homma, E. Nakamura, In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci. 107(12), 5339–5344 (2010)

    Article  CAS  Google Scholar 

  114. X. Xu, K. Xie, X.-Q. Zhang, E.M. Pridgen, G.Y. Park, D.S. Cui, J. Shi, J. Wu, P.W. Kantoff, S.J. Lippard et al., Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. 110(46), 18638–18643 (2013)

    Article  CAS  Google Scholar 

  115. Z. Liu, Z. Zhang, C. Zhou, Y. Jiao, Hydrophobic modifications of cationic polymers for gene delivery. Prog. Polym. Sci. 35(9), 1144–1162 (2010)

    Article  CAS  Google Scholar 

  116. M. Kullberg, R. McCarthy, T.J. Anchordoquy, Systemic tumor-specific gene delivery. J. Control. Release 172(3), 730–736 (2013)

    Article  CAS  Google Scholar 

  117. J.J. Green, G.T. Zugates, N.C. Tedford, Y.-H. Huang, L.G. Griffith, D.A. Lauffenburger, J.A. Sawicki, R. Langer, D.G. Anderson, Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv. Mater. 19(19), 2836–2842 (2007)

    Article  CAS  Google Scholar 

  118. J.J. Green, R. Langer, D.G. Anderson, A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41(6), 749–759 (2008)

    Article  CAS  Google Scholar 

  119. E. Wagner, Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc. Chem. Res. 45(7), 1005–1013 (2011)

    Article  Google Scholar 

  120. J.D. Eichman, A.U. Bielinska, J.F. Kukowska-Latallo, J.R. Baker, The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technol. Today 3(7), 232–245 (2000)

    Article  CAS  Google Scholar 

  121. S. Akhtar, B. Chandrasekhar, S. Attur, M.H. Yousif, I.F. Benter, On the nanotoxicity of PAMAM dendrimers: Superfect\({\textregistered }\) stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells. Int. J. Pharm. 448(1), 239–246 (2013)

    Article  CAS  Google Scholar 

  122. M. Wang, H. Liu, L. Li, Y. Cheng, A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 5(3053) (2014)

    Google Scholar 

  123. A. Lakshminarayanan, V.K. Ravi, R. Tatineni, Y.B.R.D. Rajesh, V. Maingi, K.S. Vasu, N. Madhusudhan, P.K. Maiti, A.K. Sood, S. Das, N. Jayaraman, Efficient dendrimer-DNA complexation and gene delivery vector properties of nitrogen-core poly(propyl ether imine) dendrimer in mammalian cells. Bioconjugate Chem. 24(9), 1612–1623 (2013). PMID: 23909622

    Article  CAS  Google Scholar 

  124. J. Willibald, J. Harder, K. Sparrer, K.-K. Conzelmann, T. Carell, Click-modified anandamide siRNA enables delivery and gene silencing in neuronal and immune cells. J. Am. Chem. Soc. 134(30), 12330–12333 (2012)

    Article  CAS  Google Scholar 

  125. A. Kichler, C. Leborgne, J. März, O. Danos, B. Bechinger, Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc. Natl. Acad. Sci. 100(4), 1564–1568 (2003)

    Article  CAS  Google Scholar 

  126. A. Lalatsa, A.G. Schätzlein, M. Mazza, T.B.H. Le, I.F. Uchegbu, Amphiphilic poly(l-amino acids)-new materials for drug delivery. J. Control. Release 161(2), 523–536 (2012)

    Article  CAS  Google Scholar 

  127. K. Wada, H. Arima, T. Tsutsumi, Y. Chihara, K. Hattori, F. Hirayama, K. Uekama, Improvement of gene delivery mediated by mannosylated dendrimer/\(\alpha \)-cyclodextrin conjugates. J. Control. Release 104(2), 397–413 (2005)

    Article  CAS  Google Scholar 

  128. H. Arima, Y. Chihara, M. Arizono, S. Yamashita, K. Wada, F. Hirayama, K. Uekama, Enhancement of gene transfer activity mediated by mannosylated dendrimer/alpha-cyclodextrin conjugate (generation 3, G3). J. Control. Release 116(1), 64–74 (2006)

    Article  CAS  Google Scholar 

  129. H. Yu, Y. Nie, C. Dohmen, Y. Li, E. Wagner, Epidermal growth factor-peg functionalized PAMAM-pentaethylenehexamine dendron for targeted gene delivery produced by click chemistry. Biomacromolecules 12(6), 2039–2047 (2011). PMID: 21491906

    Article  CAS  Google Scholar 

  130. A.E. Felber, B. Castagner, M. Elsabahy, G.F. Deleavey, M.J. Damha, J.-C. Leroux, siRNA nanocarriers based on methacrylic acid copolymers. J. Control. Release 152(1), 159–167 (2011)

    Article  CAS  Google Scholar 

  131. S. Theoharis, U. Krueger, P.H. Tan, D.O. Haskard, M. Weber, A.J. George, Targeting gene delivery to activated vascular endothelium using anti e/p-selectin antibody linked to PAMAM dendrimers. J. Immunol. Methods 343(2), 79–90 (2009)

    Article  CAS  Google Scholar 

  132. S.C. Zimmerman, F. Zeng, D.E. Reichert, S.V. Kolotuchin et al., Self-assembling dendrimers. Science 1095–1098 (1996)

    Google Scholar 

  133. S.M. Grayson, J.M. Frechet, Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101(12), 3819–3868 (2001)

    Article  CAS  Google Scholar 

  134. J.F. Kukowska-Latallo, A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia, J.R. Baker, Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. 93(10), 4897–4902 (1996)

    Article  CAS  Google Scholar 

  135. J. Haensler, F.C. Szoka Jr., Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 4(5), 372–379 (1993)

    Article  CAS  Google Scholar 

  136. C. Dufes, I.F. Uchegbu, A.G. Schätzlein, Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57(15), 2177–2202 (2005)

    Article  CAS  Google Scholar 

  137. S. Larin, S. Lyulin, A. Lyulin, A. Darinskii, Charge inversion of dendrimers in complexes with linear polyelectrolytes in the solutions with low pH. Polym. Sci. Ser. A 51(4), 459–468 (2009)

    Article  Google Scholar 

  138. S.V. Lyulin, I. Vattulainen, A.A. Gurtovenko, Complexes comprised of charged dendrimers, linear polyelectrolytes, and counterions: insight through coarse-grained molecular dynamics simulations. Macromolecules 41(13), 4961–4968 (2008)

    Article  CAS  Google Scholar 

  139. G.M. Pavan, L. Albertazzi, A. Danani, Ability to adapt: Different generations of PAMAM dendrimers show different behaviors in binding siRNA. J. Phys. Chem. B 114(8), 2667–2675 (2010). PMID: 20146540

    Article  CAS  Google Scholar 

  140. B. Nandy, M. Santosh, P.K. Maiti, Interaction of nucleic acids with carbon nanotubes and dendrimers. J. Biosci. 37, 457–474 (2012)

    Article  CAS  Google Scholar 

  141. R. Scherrenberg, B. Coussens, P. van Vliet, G. Edouard, J. Brackman, E. de Brabander, K. Mortensen, The molecular characteristics of poly (propyleneimine) dendrimers as studied with small-angle neutron scattering, viscosimetry, and molecular dynamics. Macromolecules 31(2), 456–461 (1998)

    Article  CAS  Google Scholar 

  142. D. Harries, S. May, W.M. Gelbart, A. Ben-Shaul, Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys. J. 75(1), 159–173 (1998)

    Article  CAS  Google Scholar 

  143. P. Welch, M. Muthukumar, Dendrimer-polyelectrolyte complexation: a model guest-host system. Macromolecules 33(16), 6159–6167 (2000)

    Article  CAS  Google Scholar 

  144. M.F. Ottaviani, F. Furini, A. Casini, N.J. Turro, S. Jockusch, D.A. Tomalia, L. Messori, Formation of supramolecular structures between DNA and starburst dendrimers studied by EPR, CD, UV, and melting profiles. Macromolecules 33(21), 7842–7851 (2000)

    Article  CAS  Google Scholar 

  145. P.K. Maiti, B. Bagchi, Structure and dynamics of DNA-dendrimer complexation: role of counterions, water, and base pair sequence. Nano Lett. 6(11), 2478–2485 (2006)

    Article  CAS  Google Scholar 

  146. A.A. Zinchenko, N. Chen, Compaction of DNA on nanoscale three-dimensional templates. J. Phys.: Condens. Matter 18(28), R453 (2006)

    CAS  Google Scholar 

  147. J. Wang, R. Wolf, J. Caldwell, P. Kollman, D. Case, Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  148. G.M. Pavan, A. Danani, S. Pricl, D.K. Smith, Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand ‘sacrifice’ and screening can enhance binding. J. Am. Chem. Soc. 131(28), 9686–9694 (2009)

    Article  CAS  Google Scholar 

  149. S.V. Larin, A.A. Darinskii, A.V. Lyulin, S.V. Lyulin, Linker formation in an overcharged complex of two dendrimers and linear polyelectrolyte. J. Phys. Chem. B 114(8), 2910–2919 (2010)

    Article  CAS  Google Scholar 

  150. S.V. Lyulin, A.A. Darinskii, A.V. Lyulin, Computer simulation of complexes of dendrimers with linear polyelectrolytes. Macromolecules 38(9), 3990–3998 (2005)

    Article  CAS  Google Scholar 

  151. S. Larin, S. Lyulin, A. Lyulin, A. Darinskii, Computer simulations of interpolyelectrolyte complexes formed by star-like polymers and linear polyelectrolytes, in Macromolecular Symposia, vol. 278 (Wiley Online Library, 2009), pp. 40–47

    Google Scholar 

  152. A. Lakshminarayanan, B.U. Reddy, N. Raghav, V.K. Ravi, A. Kumar, P.K. Maiti, A.K. Sood, N. Jayaraman, S. Das, A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. Nanoscale 7, 16921–16931 (2015)

    Article  CAS  Google Scholar 

  153. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Germany, Berlin, 2001)

    Book  Google Scholar 

  154. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2008)

    Google Scholar 

  155. P. Rima, A.K. Mitra, Synthesis and study of optical and electrical characteristics of single-wall carbon nanotube/gold nanohybrid. J. Nano Res. 17, 27–33 (2012)

    Article  Google Scholar 

  156. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006). PMID: 16522018

    Article  CAS  Google Scholar 

  157. H. Miyagawa, M. Misra, A.K. Mohanty, Mechanical properties of carbon nanotubes and their polymer nanocomposites. J. Nanosci. Nanotechnol. 5(10), 1593–1615 (2005)

    Article  CAS  Google Scholar 

  158. P. Harris, Carbon nanotube composites. Int. Mater. Rev. 49(1), 31–43 (2004)

    Article  CAS  Google Scholar 

  159. S. Quaranta, D. Gozzi, M. Tucci, L. Lazzarini, A. Latini, Efficiency improvement and full characterization of dye-sensitized solar cells with MWCNT/anatase Schottky junctions. J. Power Sources 204, 249–256 (2012)

    Article  CAS  Google Scholar 

  160. C.A. Hewitt, A.B. Kaiser, S. Roth, M. Craps, R. Czerw, D.L. Carroll, Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 12(3), 1307–1310 (2012). PMID: 22316286

    Article  CAS  Google Scholar 

  161. X. Li, F. Gittleson, M. Carmo, R.C. Sekol, A.D. Taylor, Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion. ACS Nano 6(2), 1347–1356 (2012). PMID: 22236330

    Article  CAS  Google Scholar 

  162. C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, C. Hierold, Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 6(7), 1449–1453 (2006). PMID: 16834427

    Article  CAS  Google Scholar 

  163. I.U. Hassan, V.R. Dhanak, A.M.A. Elhissi, W. Ahmed, A. D’Emanuele, Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv. 837327 (2012)

    Google Scholar 

  164. E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon 50(2), 622–632 (2012)

    Article  CAS  Google Scholar 

  165. L. Meng, X. Zhang, Q. Lu, Z. Fei, P.J. Dyson, Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6), 1689–1698 (2012)

    Article  CAS  Google Scholar 

  166. J. Narang, N. Chauhan, P. Jain, C. Pundir, Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int. J. Biol. Macromol. 50(3), 672–678 (2012)

    Article  CAS  Google Scholar 

  167. R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, K. Kostarelos, Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103(9), 3357–3362 (2006)

    Article  CAS  Google Scholar 

  168. B.K. Gorityala, J. Ma, X. Wang, P. Chen, X.-W. Liu, Carbohydrate functionalized carbon nanotubes and their applications. Chem. Soc. Rev. 39, 2925–2934 (2010)

    Article  CAS  Google Scholar 

  169. C. Gao, Z. Guo, J.-H. Liu, X.-J. Huang, The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4, 1948–1963 (2012)

    Article  CAS  Google Scholar 

  170. J. Guo, M. Lundstrom, Role of phonon scattering in carbon nanotube field-effect transistors. Appl. Phys. Lett. 86(19), 193103 (2005)

    Article  Google Scholar 

  171. P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, C. Zhou, Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 11(12), 5301–5308 (2011)

    Article  CAS  Google Scholar 

  172. H. Paloniemi, T. Aäritalo, T. Laiho, H. Liuke, N. Kocharova, K. Haapakka, F. Terzi, R. Seeber, J. Lukkari, Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization. J. Phys. Chem. B 109(18), 8634–8642 (2005). PMID: 16852022

    Article  CAS  Google Scholar 

  173. M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001)

    Article  Google Scholar 

  174. J. Wales, Carbon nanotube (2009)

    Google Scholar 

  175. S. Niyogi, C.G. Densmore, S.K. Doorn, Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J. Am. Chem. Soc. 131(3), 1144–1153 (2009). PMID: 19154177

    Article  CAS  Google Scholar 

  176. S. Ou, S. Patel, B.A. Bauer, Free energetics of carbon nanotube association in pure and aqueous ionic solutions. J. Phys. Chem. B 116(28), 8154–8168 (2012). PMID: 22780909

    Article  CAS  Google Scholar 

  177. Z. Xu, X. Yang, Z. Yang, A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies. Nano Lett. 10(3), 985–991 (2010). PMID: 20121238

    Article  CAS  Google Scholar 

  178. J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, R.J. Nicholas, Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc. 130(11), 3543–3553 (2008). PMID: 18293976

    Article  CAS  Google Scholar 

  179. M. Numata, M. Asai, K. Kaneko, A.-H. Bae, T. Hasegawa, K. Sakurai, S. Shinkai, Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (\(\beta \)-1,3-glucans). J. Am. Chem. Soc. 127(16), 5875–5884 (2005). PMID: 15839686

    Article  CAS  Google Scholar 

  180. A. Ikeda, K. Nobusawa, T. Hamano, J. Ichi Kikuchi, Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative. Org. Lett. 8(24), 5489–5492 (2006). PMID: 17107054

    Google Scholar 

  181. S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C. Eklund, Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 101(44), 8839–8842 (1997)

    Article  CAS  Google Scholar 

  182. K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J. Phys. Chem. B 104(38), 8911–8915 (2000)

    Article  CAS  Google Scholar 

  183. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3(2), 269–273 (2003)

    Article  CAS  Google Scholar 

  184. O. Matarredona, H. Rhoads, Z. Li, Jeffrey H. Harwell, L. Balzano, D.E. Resasco, Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107(48), 13357–13367 (2003)

    Google Scholar 

  185. A. Star, J.F. Stoddart, Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35(19), 7516–7520 (2002)

    Article  CAS  Google Scholar 

  186. H. Cathcart, V. Nicolosi, J.M. Hughes, W.J. Blau, J.M. Kelly, S.J. Quinn, J.N. Coleman, Ordered dna wrapping switches on luminescence in single-walled nanotube dispersions. J. Am. Chem. Soc. 130(38), 12734–12744 (2008). PMID: 18761456

    Article  CAS  Google Scholar 

  187. V. Zorbas, A. Ortiz-Acevedo, A.B. Dalton, M.M. Yoshida, G.R. Dieckmann, R.K. Draper, R.H. Baughman, M. Jose-Yacaman, I.H. Musselman, Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126(23), 7222–7227 (2004). PMID: 15186159

    Article  CAS  Google Scholar 

  188. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, N.G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    Article  CAS  Google Scholar 

  189. D. Pramanik, P.K. Maiti, Dendrimer assisted dispersion of carbon nanotubes: a molecular dynamics study. Soft Matter 12, 8512–8520 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology (DST) and the Department of Biotechnology (DBT), India for financial assistance. PKM is grateful to Prof. Bill Goddard for introducing him to the field of dendrimers a decade ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabal K. Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pramanik, D., Kanchi, S., Ayappa, K.G., Maiti, P.K. (2021). Dendrimers: A Novel Nanomaterial. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_19

Download citation

Publish with us

Policies and ethics